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Context

Comet Siding Spring (C/2013 A1) is an Oort-cloud comet that did a very close flyby to Mars on 19t October 2014.
The Closest Approach (CA) occurred at ~140,000 km (~35 Rwm).

October 19, 2014
18:28 UT

Comet C/2013 Al (Siding Spring)
' HSTWFC3/U\IS F775W

Mars
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Context

Comet Siding Spring (C/2013 A1)
is racing toward Mars for a close
encounter in October 2014.

Closest approach to Mars:  0CT 19
~86,000 miles (138,000 km) 2014

[Planetary orbits drawn to scale; object icons not to scale]
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Mars was embedded within the coma of the comet for about 10 hours.
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Context

How NASA Assets Will Observe
COMET SIDING SPRING

Closest Approach to Mars on October 19, 2014

, BOPPS, sub-orbital balloon — Sept. 2014 x Hubble — Oct. 2013, Jan., Mar,,

| and Oct. 2014
.-E Infrared Telescope Facility — Jan., Sept. g “
“" " and Oct. 2014 Swift — since Nov. 2013
i Mars Recon. Orbiter — Oct. 2014 ¥ STEREO - ongoing
£fp :
o ;é Mars Odyssey — Oct. 2014 ™ 2 SOHO - ongoing
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7’%‘@ MAVEN — Oct. 2014 /\%‘ Spitzer — Mar. and Oct. 2014
,z L= Opportunity Rover — Oct. 2014 #7  Kepler—Oct. 2014
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#JUURNE?TU M /\RS /»g;,,', ‘ Curiosity Rover — Oct. 2014 /\ Chandra - Oct. 2014
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Findings post-comet flyby

Most of the previous results come from few hours after
the comet passed Mars, when dust was fully settled in the
atmosphere

Important results:

Water production: 1.1-1.5+0.5x10% molecules s
* 82425 t of dust deposited in Mars’ atmosphere

* The largest meteor layer ever observed at a planet
other than Earth

* Dust re-distribution in the upper atmosphere within a
couple of days

* Metal ions of Na, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu,

and Zn, and possibly of Si, and Ca, identified in the
MAVEN-ion spectra collected at altitudes of ~185 km

bscmdri@Ile.ac.uk
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However during the flyby....
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However during the flyby.... comet or space weather effects?

The event at closest approach was masked by a large solar storm that arrived at Mars ~44 h before the comet
flyby. All the particle observations were extremely difficult to analyse, continuing even today.

ESAC colleagues were a key untangling this puzzle.

ICME arrival Siding—ipring flyby
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CME ejection

SDO (AIA 131) SOHO / LASCO C2 PROBA2 / SWAP STEREO Ahead EUVI 195
- — C)

14 October 2014 18:30 UT (along with
M1.1 and M2.2 flares)
201,4/10/.1;1. 21:27 2014/10/14 20:48 5 07: 2014/10/14 21:39
v =850 + 200 km/ S PROBA2 / LYRA time series : Aluminium (ch3)
lon = -120° + 30° f) s T Zirconium (ch4)
lat=-11°+ 5°
full width =106° + 10°

0.90
0.80
0.70
0.60

Irradiance W/m?

0.50

0.40
Oct 14 12:00 Oct 14 14:00 Oct 14 16:00 Oct 14 18:00 Oct 14 20:00 Oct 14 22:00 Oct 15 00:00 Oct 1502:00 Oct 15 04:00 Oct 15 06:00 Oct 15 08:00 Oct 1510:00 Oct 1512:00

Inner Solar System ) Solar System

i ; i i i 100 i ] { ]
0 10 20 30 40 50 -100 -80 -60 40 20 0

X [AU]

bscmdrl@le.ac.uk Witasse, Sanchez-Cano et al., 2017



( The journey of the solar storm EICESTER

Courtesy NASA Goddard Space Flight Center
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Solar wind simulation UNIVERSITY OF

Caveat: ENLIL does not include the drag effect from pickup ions or the
i ) enhancement of the wind mass density due to photoionization of
It contains 138 DONKI CMEs with v>500 km/s neutral hydrogen entering the heliosphere from the interstellar medium

CME input parameters: October 14, 2014
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Important findings: Same Forbush decrease at 3 different locations

Cosmic rays can be used as solar storm trackers, as the solar wind
modulates their behaviour
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Important findings: ICME speed up to 30 AU
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The solar storm and the comet at Mars

ICME arrival Siding-Spring flyby
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The comet's flyby deposited a significant amount of energetic
particles into Mars' upper atmosphere, at a similar level to a large
space weather event.
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However, the magnetic field environment was not very affected,
just a magnetic rotation was observed.

MAVEN
Magnetic field [nT]

Doy of 2014 289 : 294 295
bscmdri@le.ac.uk Sanchez-Cano et al., 2018b IS ERNE 210CT 20CT




Comet pick up ions

There were continuous precipitating cometary O* pick-up ions on Mars’ dayside during the ~10h that Mars transited the comet’s coma
region. Also after CA for several hours, although whether their origin is from the comet or space weather cannot be firmly concluded.
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Dust tail hit?

. . ~195  ~1000 KeV
More energetic particles were

detected at CA, and after the comet
flyby (up to 1.5 days after) in the
neutron monitor of Mars Odyssey.

Out Spectrum
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Those detections are very genuine and
seems related to dust tail particles
hitting the instrument and producing
X-rays and gamma-rays.
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Or space weather?
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Similar observations from Giotto

The EPONA instrument onboard the Giotto mission detected very similar features after the CA to the comet 26P/Grigg-Skjellerup in
1992. The energetic ions were observed in the energy range ~60-100 keV at 9x10* km from the comet.

Based on EPONA and magnetic field observations, McKenna-Lawlor and Afonin (1999) suggested that those late enhancements were
caused by a fragment of the main comet within the comet’s tail.

Sector 7

Sector B

Eventli

P.A. (T1,83)

1300 1400 1go0 HHMM
DIST -166.8 -116.4 -66.1 135.4 10’ km

P/Grigg-Skjellerup Encounter July 10, 1992

bscmdrl@Ile.ac.uk McKenna-Lawlor and Afonin (1999)
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The ionosphere between 350 and 1000 km

Local plasma observations at the spacecraft surroundings

The orbit period is 7h, and consecutive orbits are similar
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The ionosphere between 350 and 1000 km
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The ionosphere between 130 and 350 km

We use the NeMars model to evaluate the degree of variation of the ionospheric profile with respect to
steady conditions.

The ionospheric profiles show very rapid variability along the orbit.

a) 19-10-2014 T18:20:03 b) 19-10-2014 T18:22:57 ¢) 19-10-2014 T18:24:20 19-10-2014 T18:27:43
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Possible causes for the density increases after 18:26 UT?

Was it caused by dust impacts because the spacecraft and Was it caused by O* pick up ions?

the ionosphere were less protected?
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Possible causes for the density decreases before 18:26 UT?

Was it caused by induced magnetic field from the comet? Was it caused by water damping?
eg. H,0t+ e~ »OH+H, OH'+ e~ -»H+O0
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Closing thoughts ()

ICME

o Community collaboration on planetary space weather studies
o Multiple models and data sets needed to make plausible CME-ICME associations

o Need for space weather monitoring (at least a magnetometer and a radiation
monitor) on each planetary mission

o Low telemetry during cruise phase is helpful

bscmdri@Ile.ac.uk



: Closing thoughts (lIl)

Comet

o Comet Siding Spring was a very unique opportunity to study in-situ the interaction of two
different atmospheres
—> Links to early Solar System evolution

o There are still lots of data to analyse (although it may be not an easy task)
o This is the first time that energetic cometary particles have been observed in-situ at Mars
o The Martian system was strongly affected by the comet’s flyby. The comet deposited a

significant fluence of energetic particles, and the system showed more variability than after
the impact of a solar storm.
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Thank you very much for your
attention!!

bscmdrl@leicester.ac.uk
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