Introduction

HARISSA

Craters & families

Location of formation

Time of formation

HARISSA

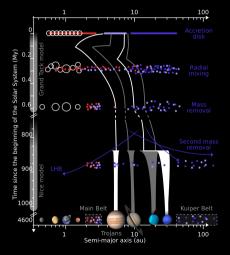
# Exploring the asteroid belt from the ground with $\ensuremath{\mathsf{VLT}}/\ensuremath{\mathsf{SPHERE}}$



**Benoit Carry** 

Lagrange, Observatoire de la Côte d'Azur








1/21 B. Carry (OCA), ESAC, 2020/01/30

< 🗗 →

| Introduction | HARISSA   | Craters & families | Location of formation | Time of formation | HARISSA |
|--------------|-----------|--------------------|-----------------------|-------------------|---------|
| Sola         | ar system | history ====       |                       |                   |         |



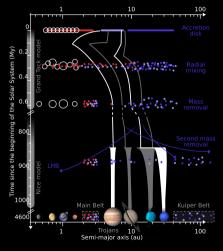
## A. Stratified accretion disk

• Gas & dust & Volatiles

DeMeo & Carry 2014

Introduction

Craters & families


Location of formation

Time of formation

HARISSA

## — Solar system history

HARISSA



#### A. Stratified accretion disk

• Gas & dust & Volatiles

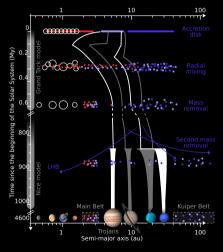
## **B. Giant Planet Migration** (*Grand Tack*)

- Jupiter migrates inward
- Saturn-Jupiter resonance stops migration
- Mix of compositions: inner solar system

DeMeo & Carry 2014

Introduction

Craters & families


Location of formation

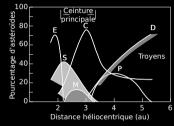
Time of formation

HARISSA

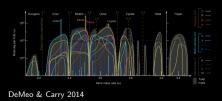
## — Solar system history

HARISSA




DeMeo & Carry 2014

- A. Stratified accretion disk
  - Gas & dust & Volatiles
- **B. Giant Planet Migration** (*Grand Tack*)
  - Jupiter migrates inward
  - Saturn-Jupiter resonance stops migration
  - Mix of compositions: inner solar system
- C. Dynamical Instability (Nice Model)
  - Uranus-Neptune outward
  - KBOs destabilized
  - Mix of compositions: outer $\rightarrow$ inner

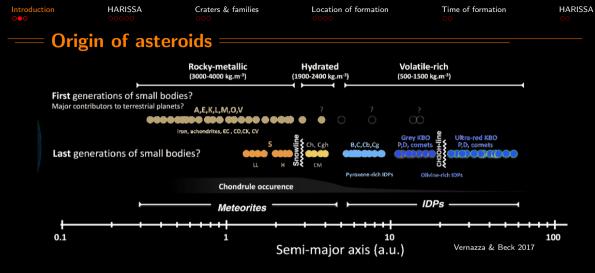

Time of formation

HARISSA

## — Solar system history

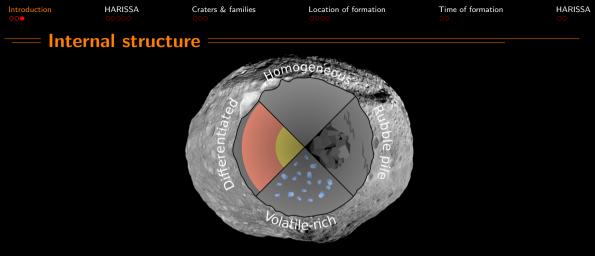


Gradie & Tedesco 1982




## A. Stratified accretion disk

• Gas & dust & Volatiles


## **B. Giant Planet Migration** (*Grand Tack*)

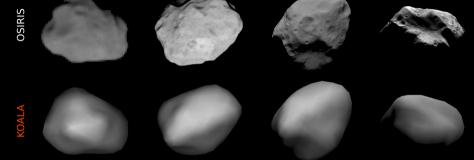
- Jupiter migrates inward
- Saturn-Jupiter resonance stops migration
- Mix of compositions: inner solar system
- C. Dynamical Instability (Nice Model)
  - Uranus-Neptune outward
  - KBOs destabilized
  - Mix of compositions: outer $\rightarrow$ inner
- ► Asteroid main belt = mix of everything



• Meteorites & Interplanetary Dust Particles (IDPs) as reference


• Try to constrain formation model with locations and timeline




- $\bullet$  Rock vs rock-ice  $\rightarrow$  Location of formation
- Differentiation  $\rightarrow$  Thermal history  $\rightarrow$  Time of formation
- $\bullet$  Collisions  $\rightarrow$  Craters, cracks, and porosity

Extremely complex to determine



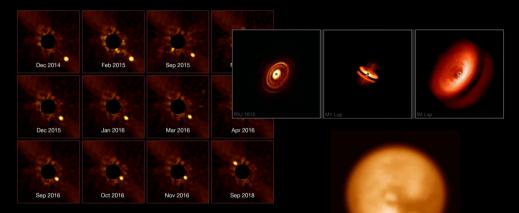




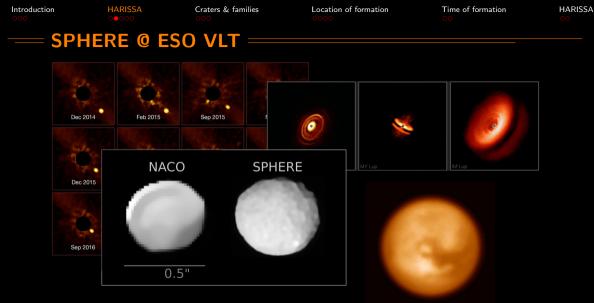


Pre-flyby model KOALA

300 000 000 km


vs. Rosetta Shape RMS 2 km

3 000 km


Accuracy Diameter @ 2–5%

Carry et al. 2010b, 2012

| Introduction | HARISSA<br>00000 | Craters & families | Location of formation | Time of formation |
|--------------|------------------|--------------------|-----------------------|-------------------|
|              | ERE @ ESO        | ) VLT =====        |                       |                   |



HARISSA



| ntroduction | HARISSA | Craters |
|-------------|---------|---------|
|             |         |         |

Time of formation



## = ESO Large Program: HARISSA

& families

- ESO Large Program
  - 152 h with SPHERE
  - $\circ$  4+1 semesters
  - SPHERE/ZIMPOL: 3.5 mas/pix PI: Vernazza
- Asteroid sample
  - 35 targets
  - All compositional groups
  - Multiple systems

- Building 3D models
  - 6 epochs per target
  - Combining LC+Occ+AO
  - ADAM algorithm Viikinkoski+2015
- Dynamics of satellites
  - LOCI processing
  - Archives of large telescopes
  - Genoid algorithm Vachier+2012



Time of formation

HARISSA

## 

## (21) Lutetia

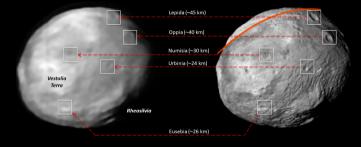


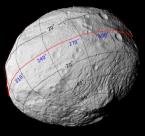


(7) Iris

## ESA Rosetta

## **VLT SPHERE**


Distance


70,000 km 135,000,000 km

8/21 B. Carry (OCA), ESAC, 2020/01/30



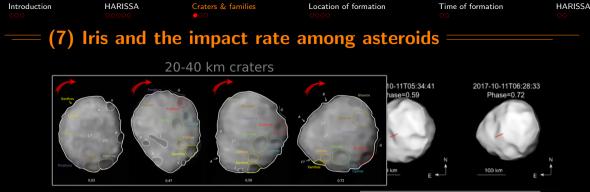
## **What to expect from HARISSA?**





Fetick+2019

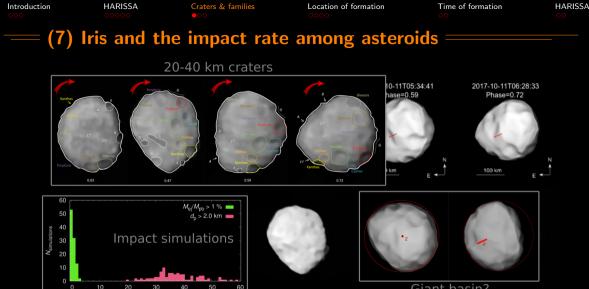
- (4) Vesta
  - NASA Dawn
  - Diameter  $\approx 0.6''$


- Size measurement
  - RMS 0.93 pixel
  - Diameter @ 1%

- Feature recognition
  - o Above  ${\sim}30\,km$
  - 80% detection rate



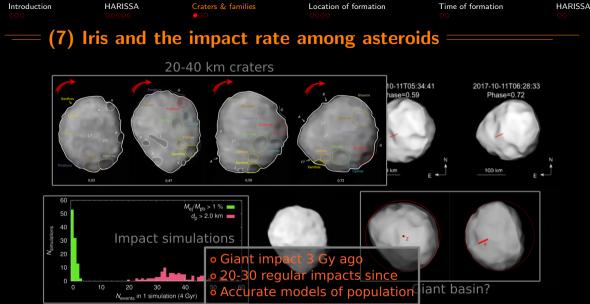



Hanus+2018

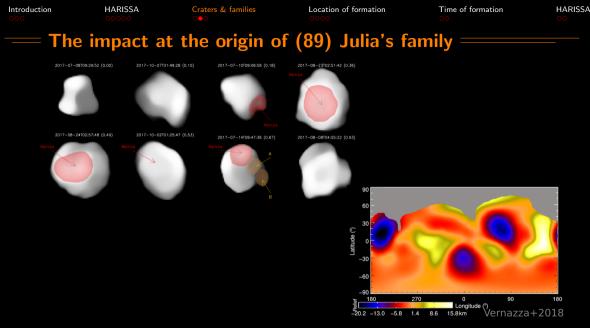


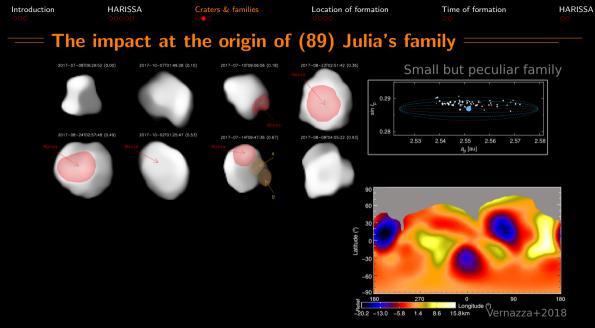


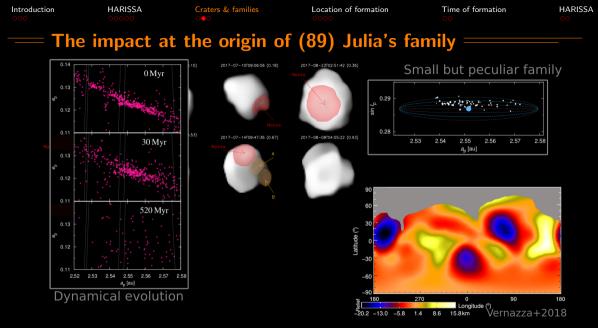
Giant basin?

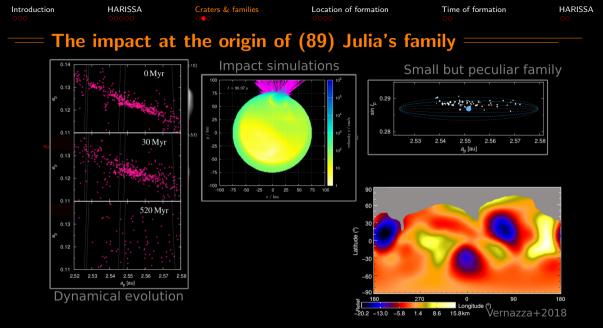

Hanus+2018

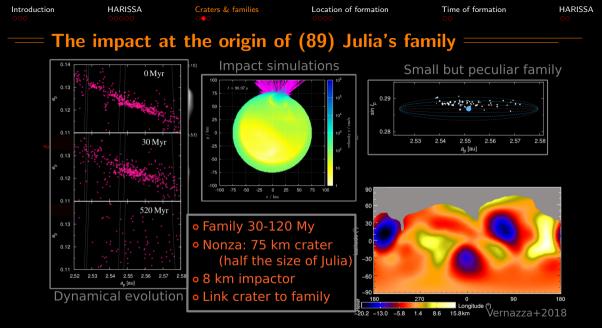



Giant basin?


Hanus+2018


Nevents in 1 simulation (4 Gyr)





Hanus+2018











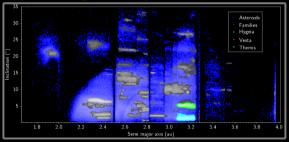
| Introduction | HARISSA   | Craters & families | Location of formation | Time of formation | HARISSA |
|--------------|-----------|--------------------|-----------------------|-------------------|---------|
| Major        | impact at | : (10) Hygeia      |                       |                   |         |





Vernazza+2019

| Introduction | HARISSA | Craters & families |
|--------------|---------|--------------------|
|              |         |                    |


Time of formation

HARISSA

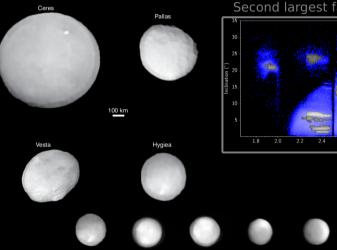
# — Major impact at (10) Hygeia



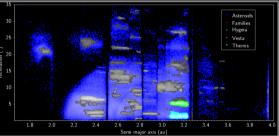
Second largest family in the asteroid belt



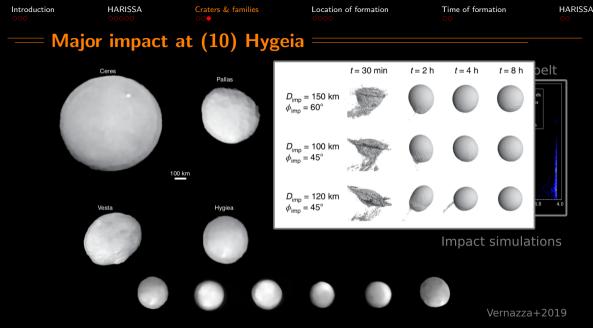
Vernazza+2019

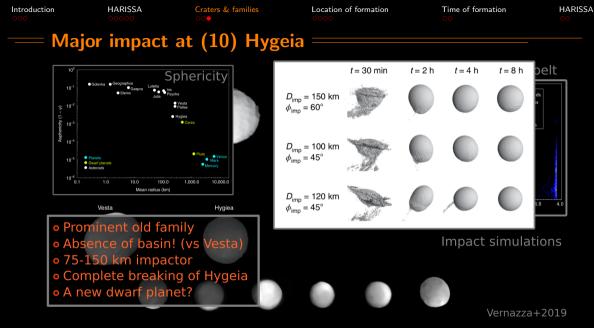

Introduction HARISSA Craters & families

Location of formation


Time of formation

HARISSA


# — Major impact at (10) Hygeia

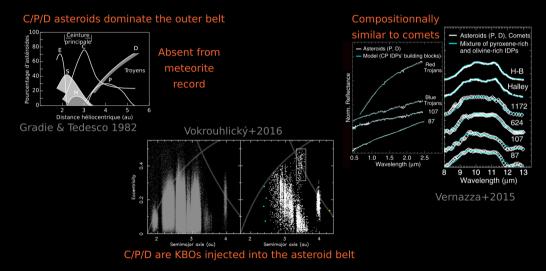



Second largest family in the asteroid belt



Vernazza+2019








Time of formation

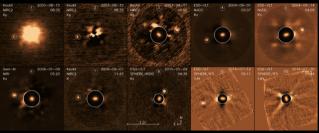


## = Rogues from the Outer Solar System?





Craters & families


Location of formation  $\circ \circ \circ \circ$ 

Time of formation

HARISSA

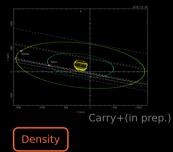
## **Satellites and density**

HARISSA



Pajuelo+2018

#### Focus on binary systems


- Challenge:  $\Delta m > 5 @ 0.5$ "
- Data processing ~ exoplanet
- Most archival data not published (!)

#### SPHERE & HARISSA

- A new binary: (31) Euphrosyne
- Second satellites to (107) Camilla & (130) Elektra Yang+2014, Marsset+2017, Vernazza+2019

#### Orbits of satellites

- Sub-pixel accuracy
- Masses of components
- Ephemerides to occultations



| Introduction | HARISSA    | Craters & families | Location of formation<br>○○●○ | Time of formation | HARISSA<br>00 |
|--------------|------------|--------------------|-------------------------------|-------------------|---------------|
| lce to       | rock ratio |                    |                               |                   |               |





#### 1. Density of P/D asteroids is LOW

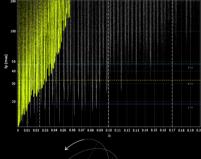
- Camilla:  $1280 \pm 260 \text{ kg} \cdot \text{m}^{-3}$  Pajuelo+2018
- Sylvia:  $1365 \pm 75 \text{ kg} \cdot \text{m}^{-3}$  Carry+(in prep)
- Patroclus:  $800 \pm 150 \text{ kg} \cdot \text{m}^{-3}$  Marchis+2005
- Consistent with KBOs Carry2012

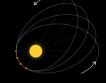
#### 2. P/D made of rock+ice+void

- Rocks: 2200 to 3000 (StarDust) Brownlee+2006
- Ice: 900 kg⋅m<sup>-3</sup>
- Porosity from cracks/fractures
- a.k.a. **big** 67P/C-G

#### 3. Infered internal structure

- Ice-to-rock ratio 4:1 (C-G like)
- Porosity 30%
- Rocky interior and outer ice-rich shell?


| Introduction | HARISSA | Craters & families |
|--------------|---------|--------------------|
|              |         |                    |


Time of formation

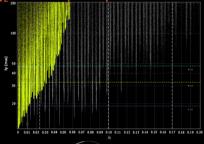
HARISSA

## **Probing the internal structure**

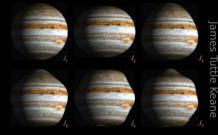
#### J<sub>2</sub> induce apside precession






| Introduction | HARISSA | Craters & families |
|--------------|---------|--------------------|
|              |         |                    |

Time of formation




## — Probing the internal structure

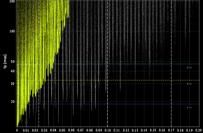
#### $J_2$ induce apside precession

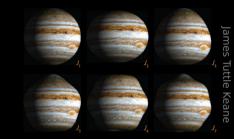








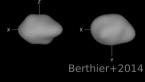

| Introduction | HARISSA | Craters & families |
|--------------|---------|--------------------|
|              |         |                    |


Time of formation



## — Probing the internal structure

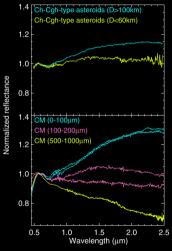
#### $J_2$ induce apside precession






#### $J_2$ measured from the shape




J<sub>2</sub> (shape) > J<sub>2</sub> (dynamics)
Mass is more concentrated (and less oblate)
P/D = mixture of rock & ice from the outer solar system



| ntroduction | HARISSA | Craters & families |
|-------------|---------|--------------------|
|             |         |                    |



# = Giant Mud Balls in the Solar System?





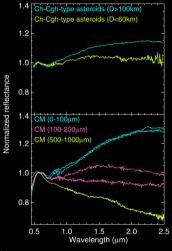
#### 1. CM carbonaceous chondrites

- Primitive composition
- Extensive hydration
- Low peak T:  $\leq$ 120-150° C

#### 2. Linked with Ch/Cgh asteroids

10% of all asteroids by mass Plydration signatures Plomogeneous composition Venue (100

#### 3. Giant Mud Balls Hypothesis


- Body-wide convection Homogeneous narent bodi
- Strong implication on structure

| ntroduction | HARISSA | Craters & | fa |
|-------------|---------|-----------|----|
|             |         |           |    |



## — Giant Mud Balls in the Solar System?

milies





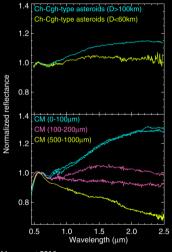
#### 1. CM carbonaceous chondrites

- Primitive composition
- Extensive hydration
- Low peak T:  $\leq$ 120-150° C

## 2. Linked with Ch/Cgh asteroids

- 10% of all asteroids by mass
- Hydration signatures
- Homogeneous composition Vernazza+2016

#### 3. Giant Mud Balls Hypothesis


Body-wide convection Homogeneous parent bodies Strong implication on structure

| ntroduction | HARISSA | Craters & fa |
|-------------|---------|--------------|
|             |         |              |



# — Giant Mud Balls in the Solar System?

milies

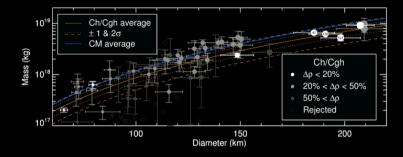




#### 1. CM carbonaceous chondrites

- Primitive composition
- Extensive hydration
- Low peak T:  $\leq$ 120-150° C

## 2. Linked with Ch/Cgh asteroids


- 10% of all asteroids by mass
- Hydration signatures
- Homogeneous composition Vernazza+2016

## 3. Giant Mud Balls Hypothesis

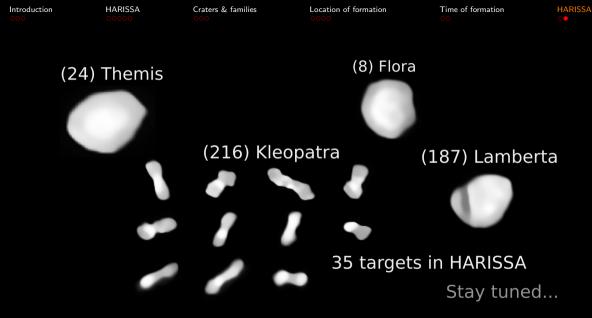
- Body-wide convection
- Homogeneous parent bodies
- Strong implication on structure Bland & Travis 2017



## Homogeneous structure of Daphne supports it!






- (41) Daphne
  - $\bullet \ \mathsf{Shape} \to \mathsf{volume}$
  - Satellite  $\rightarrow$  masse

- Compiled 77 Ch/Cgh
  - $\circ \ \rho \lesssim {\rm CM}$
  - Homogeneous structure
- Formation (from CM)
  - Farther than Jupiter
  - 3.5-4.5 My after CAI

| Introduction | HARISSA | Craters & families | Location of formation | Time of formation | HARISSA |
|--------------|---------|--------------------|-----------------------|-------------------|---------|
|              |         |                    |                       |                   |         |

## — HARISSA visits the Asteroid Main Belt

- Extreme AO offers a new window for asteroid study
  - VLT/SPHERE resolves angularly 100+ km asteroids
  - Equivalent to distant flyby
  - ELT/TMT? Not at first light. Then 5x better!
- Count craters and collisions among asteroids
  - Large crater statistics from the ground!
  - Trace impact to family to meteorites
  - Material strength to shocks
- Peer into internal structure and origins
  - Density and structure from 3D and satellite
  - Reveal formation location & timing
  - Push further Solar System formation models



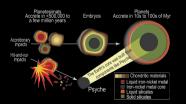
## (16) Psyche

# = (16) Psyche



American Museum of Natural History




www.elabarts.com

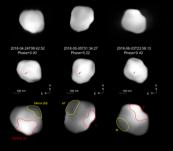
- Evidence for asteroid differentiation
  - Ni-Fe meteorites (80+ parent bodies)
  - Asteroids with high radar albedo
  - ▶ But where is the *mantle* material?

(16) Psyche

## = (16) Psyche






#### NASA

#### • Evidence for asteroid differentiation

- Ni-Fe meteorites (80+ parent bodies)
- Asteroids with high radar albedo
- But where is the mantle material?
- NASA Psyche Discovery mission
  - Orbiter to Psyche [2022-2026-2028]
  - Remnant of iron core
  - ▷ Challenged by density & silicate detection

## (16) Psyche

## **(16)** Psyche



Viikinkoski+2018

#### 21/21 B. Carry (OCA), ESAC, 2020/01/30

#### • Evidence for asteroid differentiation

- Ni-Fe meteorites (80+ parent bodies)
- Asteroids with high radar albedo
- But where is the mantle material?
- NASA Psyche Discovery mission
  - Orbiter to Psyche [2022-2026-2028]
  - Remnant of iron core
  - ▷ Challenged by density & silicate detection

#### • HARISSA meets Psyche

- Density = 3,990  $\pm$  260 kg  $\cdot m^{-3} \ll$  iron
- Meso-siderite parent body?
- Expect surprises with Psyche