

The Euclid Mission

René Laureijs Seminar at ESAC

5 June 2014

European Space Agency

Outline

- Science Context
- Cosmological Probes for Euclid
- Science objectives and driving requirements
- Mission Implementation
- Euclid surveys and data.....
- Outlook and Conclusions

Evolution of mass distribution

Expansion history

Euclid | R. Laureijs| 2014-06-05| Slide 4

What is the Universe made of?

Before Planck

After Planck

Assuming the framework of ΛCDM!

.... so far...ACDM nicely fits the observations but does not give a satisfactory explanation in terms of fundamental physics....

→ Euclid will explore the dark sectors

Euclid | R. Laureijs| 2014-06-05| Slide 5

European Space Agency

If we want to know more about dark energy... then determine the acceleration and its effects (very) accurately

The signature of the acceleration is locked up in:

- The geometry of the universe
 - Distance as a function of redshift
- Growth of density perturbations
 - Evolution of structure as a function of cosmic time, growth rate

Most promising techniques, the *cosmological probes:*

- Type 1a Supernovae
- Galaxy Clustering
 Baryon Acoustic Oscillations
 z-space distortions
 Weak Gravitational Lensing

Redshift Space Distortions

Peculiar velocities cause redshiftspace distortions

Euclid | R. Laureijs| 2014-06-05| Slide 8

Growth Rate

Guzzo, 2009

Z-space distortions reveal the growth rate of structure:

- Measure redshift and position of galaxies
- Determine the growth rate f(z) for a given redshift bin

 $f(z) = [\Omega_m(z)]^{\gamma}$

Determine the growth factor γ : $\gamma=0.55$ for standard Λ $\gamma=0.68$ for DGP braneworld

Euclid | R. Laureijs| 2014-06-05| Slide 9

Euclid – RSD improvements

Baryon Acoustic Oscillations

BAO reveals the geometry of the luminous matter: \mathbf{BAO}

- Measure redshifts of galaxies over a large volume
- Obtain the power spectrum for a given redshift bin
- Determine the "wiggles" the acoustic peaks
- The peaks correspond to a typical scale length

Euclid | R. Laureijs | 2014-06-05 | Slide 11

European Space Agency

Predicted Euclid Result

Weak Lensing

Studying the distortions in galaxy shapes caused by Dark Matter

European Space Agency

Euclid | R. Laureijs |2014-06-05 | Slide 13

Weak Lensing (2)

The weak lensing distortion is simply a (very small) change in ellipticity and position angle of a galaxy

Dark Matter

Euclid WL galaxies are ≥0.3 arcsec

Euclid | R. Laureijs | 2014-06-05 | Slide 14

European Space Agency

From shear to distribution

Reconstructed foreground mass distribution

European Space Agency

Euclid | R. Laureijs| 2014-06-05| Slide 15

Weak Lensing method

WL reveals the geometry using the dark matter:

- □ Measure shapes of galaxies over a large volume
- □ Obtain the shear power spectrum for a given redshift bin
- \square Determine the changes of the power spectrum as a function of redshift \rightarrow

cosmic acceleration

Determine also the growth factor y

Weak Lensing result: Simulated DM distribution at z=2

European Space Agency

Euclid | R. Laureijs | 2014-06-05 | Slide 16

Some Cosmology.....

- Scale factor a(t)
- Redshift z

 $a = \frac{1}{1+z}$ $z = H_0 r$ $H = \frac{\dot{a}}{a}$

European Space Agency

Euclid | R. Laureijs| 2014-06-05| Slide 17

Remember Einstein....

Friedman Equation of expansion

Conservation of Energy

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + 3p\right)$$

$$d(V\rho) = -pdV$$

Cosmological constant:

$$p_{\Lambda} = -\rho_{\Lambda}$$

w = -1

Dark Energy – equation of state

$$p = w(a)\rho$$

$$w(a) < -\frac{1}{3}$$

$$w(a) = w_p + w_a(1-a)$$

$$w(a) = w_p + w_a(1-a)$$
European Space Agency

Euclid | R. Laureijs |2014-06-05 | Slide 18

Issue	Euclid's Targets
What is Dark Energy: <i>w</i>	Measure the DE equation of state parameters w_p and w_a to a precision of 2% and 10%, respectively, using both expansion history and structure growth.
Beyond Einstein's Gravity: γ	Distinguish General Relativity from modified-gravity theories, by measuring the growth rate exponent γ with a precision of 2%.
The nature of dark matter: <i>m</i> v	Test the Cold Dark Matter paradigm for structure formation, and measure the sum of the neutrino masses to a precision better than 0.04eV when combined with Planck.
The seeds of cosmic structure: f _{NL}	Improve by a factor of 20 the determination of the initial condition parameters compared to Planck alone. n (spectral index), σ_8 (power spectrum amplitude), f_{NL} (non-gaussianity)

Forecast

Constraints on γ and n_s . Errors marginalised over all other parameters.

0.96

n_s

0.98

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	γ	т _v /eV	f _{NL}	w _p	w _a	FoM
Euclid primary (WL+GC)	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current (2011)	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>40	>400

Ref: Euclid RB arXiv:1110.3193 EGA UNGLAGGIFIED - FUL UNICIALUSE

Assume systematic errors are under control

Mission Implementation

Euclid Scientific Requirements

- Optimize the mission for two complementary dark energy probes: galaxy clustering and weak lensing;
- Minimum survey area of 15,000 deg² (36% of the total sky)
 > 6 year nominal mission

Weak Lensing: → VIS imager + NIR imaging-photometer

- > Shapes and shear of galaxies with a density of >30 galaxies/arcmin².
- > Minimum Systematics $\sigma^2_{sys} < 10^{-7}$
 - Very high image quality, high stability
- Redshift range 0<z<~2, accuracy dz/(z+1) ~ 0.05</p>

Galaxy clustering → NIR slitless spectrometer

- Redshifts for >1700 galaxies/deg²
- Redshift range 0.9 < z < 1.8, accuracy dz/(z+1) < 0.001
- Same area as WL→ line Flux limit < 2 10⁻¹⁶ erg cm⁻²s⁻¹

Euclid | R. Laureijs | 2014-06-05 | Slide 22

Ground based data

- Euclid cannot meet the photo-z requirement dz/(z+1) ~ 0.05 without ground based data. The availability of ground based data is an essential part of meeting the science objectives:
 - 4-band (g,r,i,z) imaging photometry down to ~24.5 mag
 - Same coverage as the Euclid survey (15,000 deg²)
- Status
 - Southern hemisphere: DES data
 - Northern Hemisphere: negotiations in progress

Requirements flow-down

The top level requirements are flown down to the main sub-systems, with a traceable and justifiable budgeting

Euclid Payload

- □ Korsch 3-mirror anastigmat (TMA) telescope, 1.2 m primary, FoV ~0.54 deg²
- Optical bench and payload cavity are passively cooled down to 150 K; with two instruments:
 - NISP: Spectrometer/Photo-imager 0.92 < λ < 2.0 micron
 16 (2kx2k) HgCdTe (HAWAII-2RG) detectors operating at 90-100 K
 - VIS: Visual imager 0.55 < λ < 0.92 micron
 36 (4kx4k) CCDs, single filter
- Sensors are optimised for Euclid
- PLM industrial contractor: Airbus DS - Toulouse

Euclid | R. Laureijs| 2014-06-05| Slide 25

Credit: Space Telescope Science Institute/Nick Scoville (Caltech)

Euclid Payload

Euclid Mission and Spacecraft

Mission

- Soyouz-Fregat ST-2.1B carrier, ~2150 kg spacecraft mass to L2, with line of sight nearly 90 degrees from Sun, to ensure thermal stability
- Mission is scoped to a nominal lifetime of 6 years + cruise + commissioning

Spacecraft

- Attitude and Orbit Control System includes a Fine Guidance Sensor near the (visual) instrument's focal plane; pointing stability < 25 mas during > 700 s.
- 4 hours daily communication window with K-band to receive
 850 Gbit/day compressed science telemetry

European Space Agency

euclid

European Space Agency

Euclid Spacecraft

Reaction wheels operated in "Stop and go"
 Cold gas for fine pointing actuation
 Spacecraft Prime Contractor: Thales-Alenia Space, Turin

Euclid | R. Laureijs| 2014-06-05| Slide 28

esa

• Wide Survey:

Euclid's primary *wide survey* aims at covering 15,000 deg², i.e. most of the extragalactic sky.

Deep Survey:

Euclid's additional *deep survey* covers ~40 square degrees. This survey is 2 mag deeper than the wide survey \rightarrow AB > 26.5 mag.

Additional Surveys

The Euclid instrument and pointing capabilities offer the possibility to carry out additional surveys, during or after the nominal mission.

Euclid reference survey

- Avoided: Ecliptic plane (zodiacal light) and low (<30 deg) galactic latitudes
- Different colours indicate different survey years
- Calibration fields along the galactic plane

Euclid | R. Laureijs | 2014-06-05 | Slide 30

European Space Agency

Euclid Machinery

Euclid | R. Laureijs | 2014-06-05 | Slide 31

Science Ground Segment (SGS)

Data Processing Flow

ESA UNCLASSIFIED – For Official Use

Example: VIS pipeline

Object type	Typical size	Number produced	Input or Output
Scientific exposure	1 GB	170000	I
Calibration exposure	1 GB	80000	Ι
Calibrated exposure and mask	3 GB	170000	0
Calibrated stack and mask	n x 3 GB	30000-40000	0
Exposure catalog	60000 sources per field		0

Euclid | R. Laureijs | 2014-06-05 | Slide 34

European Space Agency

Euclid Legacy

Billions of stars and galaxies

- > statistics: Euclid = a SDSS survey for the 1 < z < 3 universe
- ➤ rare objects
- □ The Euclid surveys feature:
 - High resolution imaging,
 - NIR: access to cool, obscured and high redshift sources
 - Wide survey 15,000 deg² YJH_{AB}=24: 680 years with VISTA
 - Deep survey 40 deg² YJH_{AB} =26 : 72 years with VISTA
- □ Synergy with LSST (a NIR LSST), GAIA, e-ROSITA, Planck
- □ Targets for JWST, ELT's, ALMA

Legacy Euclid surveys add hugely to scientific return from the mission

Simulations of gravitational arcs and Einstein rings with Euclid

SLACS (~2010 - HST)

-	0)	-		1		0		
SDSS J1420+6019	SOSS J2321-0930	SDS5 J1106+5228	SDS5 J1029+0420	5065 J1143-0144	SDSS J0955+0101	5055 J0841+3824	5055 J0044+0113	5055 J143246317	SD55 J1451-0239
	P265 U012-5327								
5055 30912+0029	5055 J1204+0358	SDSS J1153+4612	SDSS J2341+0000	\$055 J1403+0006	SDSS 30936+0913	SDSS J1023+4230	5055 30037-0942	SDSS J1402+6321	SDS5 J0728+3835
5055 J1627-000.5	5055 J1200+4910	5055 (11+2+1001	5055 10946+1000	5055 J1231-0200	5055 .0029-0055	5055 J1636+4707	3055 12300+0022	5055 J1250+0523	3035 J0959+4416
0					0		6		
SDS5 #0956+5100	SDS5 JD822+2652	SDSS J1621+3931	SDSS J1630+4520	SD55 J1112+0826	SD5S J0252+0039	S055 J1020+1122	S055 J1430+4105	5055 J1436-0000	SDSS J0169+1500
	6	۲			-	۲			
SDSS 31416+5136	\$05\$ J1100+5329	SDSS J0737+3216	SDSS_J0216-0813	\$0\$5 (0935-0003	SDSS J0330-0020	SDSS J1525+3327	5055 30903+4118	SDSS J0008-0004	5055 J0197-0096

SLACS: The Sloan Lens ACS Survey

www.SLACS.org

A. Bolton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Govazzi (IAP Paris), L. Moustakos (JPL/Caltech), S. Burles (MIT)

Image credit: A. Bolton, for the SLACS team and NASA/ESA

Courtesy: L. Koopmans

and a state of the second of the second state of the second second second second second second second second s

Summary

- Euclid is an ESA mission with an immense scientific value:
 Cosmology, Fundamental Physics, and Legacy for all Astronomy
 - > 12 billion sources, 50 million redshifts
- □ It will measure complementary cosmological probes
- Euclid is a feasible mission: no technical (high TRL) and programmatic show stoppers – but there are still challenges.
- The Euclid Consortium consists of more than 100 European institutes and is well organised. It is fully equipped to support the mission and its science return
- Approved in June 2012, Launch in 2020 6 year nominal operations.

ESA Scientists

- According to SMP, ESA scientists can have 5% of the proprietary papers
- ESA scientists will not be members of the consortium but have the same publication rights
- Use are in the process defining project for ESA scientists
- □ E.g. solar system transients, extended emission, ...

Thanks for your attention!