

BLACK HOLES (AND NEUTRON STARS) IN X-RAY BINARIES: Evolution and Accretion states

TEO MUÑOZ DARIAS MARIE CURIE FELLOW

Oxford Astrophysics

Low Mass X-ray Binaries (LMXBs)

Normal ($<IM_{SUN}$) star transferring matter onto a compact object (Black hole / Neutron star)

XRBs provide the best laboratories to study BH/NS

Most of the **BLACK HOLES** are **TRANSIENT** Quiescence / Outburst

Dynamical Studies

Accretion Processes General relativity

Most of the **BLACK HOLES** are **TRANSIENT**

Quiescence

Outburst

Dynamical Studies

Accretion Processes General relativity

OUTLINE

I. Accretion state picture for black hole Binaries: similarities to Neutron stars

II. Inclination effects: how they do affect the Observed outburst evolution

Black Holes in Outburst

Corona: Hard X-rays (up to 100 keV-1MeV)
Accretion disc: Soft X-rays (few keV) to Infrared
Companion: only through X-ray reprocessing
Jet: Radio to infrared/optical to high-energies(?) [NOT ALWAYS]

MULTIWAVELENGTH SOURCES

MULTIWAVELENGTH SOURCES

BLACK HOLE IN OUTBURST: HYSTERESIS

Daily basis monitoring (RXTE)

X-ray Luminosity

Variability

THE VARIABILITY DIAGRAM

Muñoz-Darias, Motta & Belloni, 2011

THE VARIABILITY DIAGRAM

Muñoz-Darias, Motta & Belloni, 2011

• Other state-dependent timing features (e.g. Oscillations)

TWO MAIN ACCRETION STATES

How hard the spectrum is

TWO MAIN ACCRETION STATES

STATE-DEPENDENT RADIO JETS

STATE-DEPENDENT RADIO JETS

STATE-DEPENDENT RADIO JETS

GLOBAL STUDIES: BLACK HOLES

- Large data base (~15 years of RXTE monitoring): systematic studies
- 25 Black Hole candidate studied by Dunn et al.

Dunn et al. 2010

GLOBAL STUDIES: BLACK HOLES

• Large data base (~15 years of RXTE monitoring): systematic studies

• 25 Black Hole candidate studied by Dunn et al.

Dunn et al. 2010

GLOBAL STUDIES: BLACK HOLES

RXTE monitoring + Detailed studies using XMM and Chandra

0.5 0.5 High inclination-dipping LMXB Low inclination-non dipping LMXB HLD HLD 0 0 -0.5 -0.5 1.5 -1.5 (^{ppg})0L_)601 Log(L_{To}/L_{Edd}) 4U1630-47 -3- 1 eV XTEJ1817-330 XXVI upper limits Fe XXVI upper limits GROJ1655-40 -3.5 -3.5 EW> -25 eV W> -25 eV GX339-4 XTEJ1650-500 H1743-322 >-10 eV > -10 eV >-1 eV 4U1957+115 GRS1758-258 > -1 eV GRS1915+105 -1 -0.5 Log(Lum₆₋₁₀/Lum_{3-6 keV}) Log(Lum₆₋₁₀/Lum_{3-6 kev} -0.8 0 -1.5 0 $^{-1}$

TOWARDS A MORE COMPLETE PICTURE...

TOWARDS A MORE COMPLETE PICTURE...

NEUTRON STARS

 Brightest and more numerous: Studied first

- More complex behaviour (Extra component)
- Most of them are persistent systems (but a few transients as well)

 Some transients look similar to Black holes

BLACK HOLE EVOLUTION AND LINE-OF-SIGHTS

Muñoz-Darias, Coriat, Plant, Ponti, Fender Dunn, MNRAS, 2013

INCLINATION EFFECTS

• Large data base (~15 years of **RXTE monitoring**): systematic studies

Inclination effects:

how they do affect the Hardness-intensity diagrams

A CLOSER VIEW...

• RXTE absorption corrected fluxes (Dunn et al. 2010)

A CLOSER VIEW...

• RXTE absorption corrected fluxes (Dunn et al. 2010)

A CLOSER VIEW...

• RXTE absorption corrected fluxes (Dunn et al. 2010)

ACCRETION DISCS AND GENERAL RELATIVITY

• Low inclination disc dominated by gravitational redshift

• Gravitational redshift starts to be compensated by blue shifting when looking at higher inclinations.

ACCRETION DISCS AND GENERAL RELATIVITY

 Gravitational redshift starts to be compensated by blue shifting when looking at higher inclinations.

ACCRETION DISCS AND GENERAL RELATIVITY

DO WE REALLY SEETHAT?

Fits presented in Dunn et al. 2010 (Newtonian discs (DISKBB))

 $T_{OBS} = T_{PEAK} f_{COL} f_{GR} [i, Spin]$ (see e.g. Zhang, Cui & Chen 1997; Cunnigham 1975)

DO WE REALLY SEE THAT?

 $f_{GR}[i,a=0.0]$

Fits presented in Dunn et al. 2010 (Newtonian discs (DISKBB))

 $T_{OBS} = T_{PEAK} f_{COL} f_{GR} [i, Spin]$ (see e.g. Zhang, Cui & Chen 1997; Cunnigham 1975)

DO WE REALLY SEETHAT?

Fits presented in Dunn et al. 2010 (Newtonian discs (DISKBB))

 $T_{OBS} = T_{PEAK} f_{COL} f_{GR} [i, Spin]$ (see e.g. Zhang, Cui & Chen 1997; Cunnigham 1975)

DOES IT EXPLAIN EVERYTHING ?

*Simulations using a KERRBB fully relativistic modeling

DOES IT EXPLAIN EVERYTHING ?

*Simulations using a KERRBB fully relativistic modeling

