

# Neutron star atmospheres enriched with nuclear burning ashes

Joonas Nättilä joonas.a.nattila@utu.fi

**Collaborators:** 

Jari Kajava (ESAC) Valery Suleimanov (Tübingen) Juri Poutanen (Tuorla Observatory)











#### From atoms to neutrons



McGraw-Hill





# But what exactly is inside?





# Hot neutron stars in LMXB systems



Copyright (C) 2005, by Fahad Sulehria, http://www.novacelestia.com.

# Origin of X-ray bursts







A. Spitkovsky

#### Photospheric Radius Expansion bursts



Data from RXTE/PCA instrument

Soft state bursts







# Which one is right?

Soft state bursts - large accretion rates?

Hard state bursts - small accretion rates?

What does the theory say?

| $\frac{\mathrm{d}P_{\mathrm{g}}}{\mathrm{d}m} = g - g_{\mathrm{rad}}, \qquad \mathrm{d}m = -\rho \mathrm{d}s,$ | Hydrostatic equilibrium |
|----------------------------------------------------------------------------------------------------------------|-------------------------|
|----------------------------------------------------------------------------------------------------------------|-------------------------|

| $\frac{\mathrm{d}P_{\mathrm{g}}}{\mathrm{d}m} = g - g_{\mathrm{rad}},$ | $\mathrm{d}m=-\rho\mathrm{d}s,$ | Hydrostatic equilibrium |
|------------------------------------------------------------------------|---------------------------------|-------------------------|
| $\mu \frac{\mathrm{d}I(x,\mu)}{\mathrm{d}\tau(x,\mu)} = I(x)$          | $(x,\mu) - S(x,\mu),$           | Radiative transfer      |

| $\frac{\mathrm{d}P_{\mathrm{g}}}{\mathrm{d}m} = g - g_{\mathrm{rad}}, \qquad \mathrm{d}m = -\rho \mathrm{d}s,$                 | Hydrostatic equilibrium                           |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| $\mu \frac{\mathrm{d}I(x,\mu)}{\mathrm{d}\tau(x,\mu)} = I(x,\mu) - S(x,\mu),$                                                  | Radiative transfer                                |
| $\sigma(x,\mu) = \kappa_{\rm e} \frac{1}{x} \int_{0}^{\infty} x_1 dx_1 \int_{-1}^{1} d\mu_1 R(x_1,\mu_1;x,\mu) \left(1\right)$ | $+\frac{CI(x_1,\mu_1)}{x_1^3}$ , Electron opacity |

| $\frac{\mathrm{d}P_{\mathrm{g}}}{\mathrm{d}m} = g - g_{\mathrm{rad}}, \qquad \mathrm{d}m = -\rho \mathrm{d}s,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hydrostatic equilibrium                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| $\mu \frac{\mathrm{d}I(x,\mu)}{\mathrm{d}\tau(x,\mu)} = I(x,\mu) - S(x,\mu),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Radiative transfer                                            |
| $\sigma(x,\mu) = \kappa_{\rm e} \frac{1}{x} \int_{0}^{\infty} x_1 dx_1 \int_{-1}^{1} d\mu_1 R(x_1,\mu_1;x,\mu) \left(1 + \frac{1}{x} \int_{0}^{\infty} x_1 dx_1 \int_{-1}^{1} d\mu_1 R(x_1,\mu_1;x,\mu)\right) \left(1 + \frac{1}{x} \int_{0}^{\infty} x_1 dx_1 \int_{-1}^{\infty} d\mu_1 R(x_1,\mu_1;x,\mu)\right) \left(1 + \frac{1}{x} \int_{0}^{\infty} x_1 dx_1 \int_{-1}^{\infty} d\mu_1 R(x_1,\mu_1;x,\mu)\right) \left(1 + \frac{1}{x} \int_{0}^{\infty} x_1 dx_1 \int_{-1}^{\infty} d\mu_1 R(x_1,\mu_1;x,\mu)\right) \left(1 + \frac{1}{x} \int_{0}^{\infty} x_1 dx_1 \int_{0}^{\infty} d\mu_1 R(x_1,\mu_1;x,\mu)\right) \left(1 + \frac{1}{x} \int_{0}^{\infty} x_1 dx_1 \int_{0}^{\infty} d\mu_1 R(x_1,\mu_1;x,\mu)\right) \left(1 + \frac{1}{x} \int_{0}^{\infty} x_1 dx_1 \int_{0}^{\infty} d\mu_1 R(x_1,\mu_1;x,\mu)\right) \left(1 + \frac{1}{x} \int_{0}^{\infty} x_1 dx_1 \int_{0}^{\infty} x_1 dx_1 \int_{0}^{\infty} d\mu_1 R(x_1,\mu_1;x,\mu)\right) \left(1 + \frac{1}{x} \int_{0}^{\infty} x_1 dx_1 dx_1 \int_{0}^{\infty} x_1 dx_1 dx_1 \int_{0}^{\infty} x_1 dx_1 dx_1 dx_1 dx_1 dx_1 dx_1 dx_1 $ | $\left(\frac{CI(x_1,\mu_1)}{x_1^3}\right)$ , Electron opacity |
| $\int_0^\infty dx  \int_{-1}^{+1} \left[ \sigma(x,\mu) + k(x) \right] \left[ I(x,\mu) - S(x,\mu) \right] dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )] $d\mu = 0$ , Energy balance                                |

| $\frac{\mathrm{d}P_{\mathrm{g}}}{\mathrm{d}m} = g - g_{\mathrm{rad}}, \qquad \mathrm{d}m = -\rho \mathrm{d}s,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hydrostatic equilibrium                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| $\mu \frac{\mathrm{d}I(x,\mu)}{\mathrm{d}\tau(x,\mu)} = I(x,\mu) - S(x,\mu),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Radiative transfer                                        |
| $\sigma(x,\mu) = \kappa_{\rm e} \frac{1}{x} \int_{0}^{\infty} x_1 dx_1 \int_{-1}^{1} d\mu_1 R(x_1,\mu_1;x,\mu) \left(1 + \frac{C I(x_1,\mu_1;x,\mu)}{x_1}\right) \left(1 + C I(x_1,\mu_1;x,$ | $\left(\frac{x_1,\mu_1}{x_1^3}\right)$ , Electron opacity |
| $\int_0^\infty dx  \int_{-1}^{+1} \left[ \sigma(x,\mu) + k(x) \right] \left[ I(x,\mu) - S(x,\mu) \right]  d\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı = 0, Energy balance                                     |
| $P_{\rm g} = N_{\rm tot} kT,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ideal gas law                                             |

#### Atmosphere structure: temperature profile



### Emerging spectrum

Well described by diluted black body (in range 2.5 - 25.0 keV)

$$F_{\rm E} = \frac{1}{f_{\rm c}^4} B_{\rm E} (T_{\rm c} = f_{\rm c} T_{\rm eff})$$



## Color-correction factor fc

Models: 
$$F_{\rm E} = \frac{1}{f_{\rm c}^4} B_{\rm E}(T_{\rm c} = f_{\rm c}T_{\rm eff})$$

**Observations:**  $F_{\rm E} = K \times {\bf B}_{\rm E}(T)$ 







Large accretion rate

Small accretion rate

#### Observations with hard state bursts



Agree! — Mass and radius

K -1/4

Mass & Radius 4U 1608-52



Soft state - Wrong!

Hard state



#### What about metals?

#### What about metals?



#### Metal rich atmospheres



#### Color-correction factors fc







# Disk dynamics & pollution

#### Dynamic timescales of disk

# New way of producing heavy metals & ejecting them into ISM



#### Conclusions (1/2)

- Accretion processes affect cooling
  - Hard & soft state bursts
    - Poutanen, Nättilä, Kajava, Latvala, Galloway, Kuulkers & Suleimanov 2014 MNRAS
    - Kajava, Nättilä, Latvala, Pursiainen, Poutanen, Suleimanov, Revnivtsev, Kuulkers & Galloway 2014, MNRAS
- Mass & radius estimates: 12-15 km
  - Rotational effects still missing

#### Conclusions (2/2)

- We have computed new metal enriched atmosphere models
  - Nättilä et al 2014, A&A, in prep.
- Evidence found for metals reaching photosphere
  - Best example so far: HETE J1900.1-2455
    - Nättilä et al 2015, A&A, in prep.
  - More examples already found in the burst database we have compiled

Thanks!