


What is aerobraking?

1. Using the drag of atmosphere against the spacecraft body in order to
reduce spacecraft speed. This will result in a lower apocenter altitude and
a shorter orbital period. This will enable significant savings of fuel to reach
an operational orbit and so enable new classes of missions.

2. The major limiting factors in aerobraking are the capability to maintain a

stable attitude during the aerobraking, and the capability to withstand the
dynamic loads and the aerothermal heat flux. All elements that related to

the s/c design.

3. For the operations it is of great importance to ensure that the aerobraking
Is entered with the correct spacecraft attitude, therefore any safe modes
should be avoided during this periods.
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Specific points for Venus Express d<esa

1. Venus Express has a body/solar array layout that results in a
dynamically stable attitude.

2. A software mode to operate the spacecraft is during aerobraking is a
part of the on board software. Aerobraking was initially foreseen as a
backup in case the Venus orbit insertion would fail, however it was
never intended to be used as a part of the nominal mission. Only
limited testing of this has been performed.

3. The most limiting factor on Venus Express is likely to be the
aerothermal heat input on the Multi Layer Insulation on the —Z
platform.

4. The uncertainty and variable character of the Atmosphere.
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Pericentre velocity vs Orbital Period dcesa
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Reducing Apocentre altitude

Aero-braking in upper atmosphere
(pericentre altitude = 130 to 140 km)

Target orbit
| _~ Period 12h
Required pericentre

Delta-V 250 m/s

37 000 km

Target orbit
Period 18h

Required pericentre
Delta-V 90 m/s

53 000 km

67 000 km

Current orbit
i Period 24h
European Space Agency






Venus Express Aerobraking

1. A reduction of the orbital period and apocentre altitude was
discussed in 2010 in order to,

a. Achieve new opportunities for science observations in
new orbit, lower/shorter than the present 24 h orbit

b. Reduce the pericentre downward drift and so save fuel
and extend the operational life of the mission

2. At areview in 2011 it was considered that aerobraking would
be too risky to carry out as a part of the active science mission
and it was recommended to carry it out as an end of mission
activity.

3. Estimates of the amount of remaining fuel in 2013 showed that
we may run out of fuel mid 2014.

4. Being near the end of the mission it was decided to execute an
experimental aerobraking in June/July 2014. e spece foeny



What about the fuel? ‘\\Q& eSa

1. Why does VEX run out of fuel before MEX?

a.

The orbit of VEX takes the spacecraft out to 66000 km away from
the planet. Here the orbit is only loosely bound to Venus and
strongly affected by the gravity of the sun. At this phase of the
mission this leads to a reduction of the pericentre altitude. MEX
has a much lower apocentre distance and it much farther form the
Sun and therefore do not suffer form this effect.

2. How is the amount of remaining fuel measured?

a.

By summing up the time the thrusters and the main engine have
operated and multiplying by a factor. This number is then
subtracted from the fuel mass at launch. - Uncertain!

A special test, heating up the tanks and following the thermal
response up and down, the thermal inertia of tank/fuel was
estimated. Then the amount of fuel can be calculated.- Uncertain!

European Space Agency
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Aerobraking configuration ‘\&\

eSa

F-—'-"'""_'_'_-J o (angle of attack)

VENUS

VEx orbit
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Relation of key parameters

Peak . Thruster Delta-V over
i Aerodynamic :
aerodynamic delta-V (m/s) delta-V in BM | one plateau
pressure & TTM (m/s) (m/s)
1 0.08 N/m? 0.16 0.007 5
2 0.20 N/m? 0.38 0.008 12
3 0.32 N/m? 0.60 0.007 18
4 0.40 N/m? 0.76 0.007 23
5 0.50 N/m? 0.95 0.006 29

European Space Agency



Aerobraking sequence

Thruster
Normal Braking Tr:;::l?tinn P;&:E:I
Mode Mode Aode
— —— — e A LN
T '\IIII,.-— —-\H"
Ammosphere
_ CIOSSIN
Earth/Sun | Slew | Aerobraking Aerobraking | Slew  |Earth/Stm
pomting | mancewwvre | athiude _ _ attitude | manoeuvte | pomting
Mai'gm Margin
2
4 Time line

~1 8005 ~000s ~300s ~150s ~300s (oax) ~G00s ~1800s
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Optimum conditions for 1
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aerobraking at Venus
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Preparation for aerobraking

1. A full test of the aerobraking mode at high altitude (well
outside the atmosphere) was carried out 19 Nov 2013.

2. A series of event simulations was been carried out by ESOC
during March-April 2014 in order to prepare the ground system
for the planned activities.

3. All activities have been carried out on an experimantal basis as
manpower is very limited at this late stage of the mission

4. Several campigns with Drag.Torque measurments have taken
place to as good as possible estimate the expected atmospheric
density in the region concerned.

European Space Agency



1 \N\\\
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Science of Aerobraking ‘\&\

1. Using on board accelerometers, atmospheric density can be estimated
at any point along the track through the atmosphere.

a. ma,=%pSv2_C,
b. Sensitive to about 10-11 kg/m?3 corresponding to about 155 km

2. Measurements will be taken as low as at 130 km altitude
3. Measuring total density in a region not accessible by other methods

4. Collecting information across the terminator region where the density
gradient can be very steep

5. Collecting information in the high latitude region around 75 deg North
6. Searching and characterising atmospheric waves, and possibly winds

7. Carrying out magnetic field measurements at very low altitude

European Space Agency



Preparation for aerobraking:
Torque technique for measuring
atmospheric density at low altitudes

Torque from air drag., 01/08/2012 Torque from air drag, 07/09/2012
Altitude: 170.557 km Altitude: 169.667 km
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Models and measurements of
density and temperature

 VIRA (Venus International Reference Model), Hedin
model, VTS3 model

« Measurements on Venus Express
— Spicav, up to 130 km (only CO.,)
— SOIR, up to 150 km (only CO,)
— VeRa, up to 95 km
— Drag, by radio tracking, 165-180 km
— Torque, 165-200 km

June 2014 ISSI w/s 20
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Making a one-dimensional model
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JMCT Submm data
Courtesy of T. Clancy
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Courtesy of F. Montmessin
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Log density [kg/m3]
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orque measurement

1 2
T - ECD'D Aeff V (rSA—cop B rSC—com)

-

SA cop
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Dominating error: Cbo (~15%)
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High day to Day variablity from “

Drag/Torque measurements at 165km
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Altitude [km]
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Polar density, raw torque data

200

150

100
1.00E-15 1.00

June 2014

E-14 1.00E-13 1.00E-12 1.00E-11 1.00E-10 1.00E-09 1.00E-08 1.00E-07 1.00E-06 1.00E-05
Atmospheric Density [kg/m3]

ISSI w/s 27



Altitude [km]

250 -

200

Polar density, normalised to 90 deg SZA

150

100

1.00E-15

1.00E-14 1.00E-13 1.00E-12 1.00E-11 1.00E-10 1.00E-09 1.00E-08 1.00E-O7 1.00E-06 1.00E-05
Atmospheric Density [kg/m3]

June 2014 ISSI w/s 28



q

Rho,,, = Rho(h) - F(sza) - G(lat)
Rho=(C, e ~h/sh1 4 C, ghish2 )

F(sza) = (1 - C, Atan (C; (sza - 90))
G(lat) = (1 + C, Cos lat)

June 2014 ISSI w/s 29



==k =
N R O 00 N

o O
00

Compensation factor
9]

o O
N

o

June 2014

50

Solar Zenith angle dependance

aall I .
* Valid for 80 < sza < 100
*
*
.
%e
Mid L YTV OOUON
60 70 80 90 100 110 120 130

SolarZenith angle [deg]

ISSI w/s 30



q

Latitudinal dependance
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A spacecraft designed for u

aerobraking

e |s has often been mentioned that the VEX spacecraft was not
designed to perform aerobraking. This is not correct. The contract
with Astrium included as a requirement compliancy with
aerobraking to a level of 0.3 N/m?, including all required margins
that apply in the beginning of the mission. This was a heritage from
MEX and the intension was to use aerobraking as a back-up in
case the orbit insertion would not work as planned. Some
examples of specific design issues are:

— Dynamically stable spacecraft due to high mounted solar panels leading to
a centre of pressure well behind the centre of mass

— Additional tests at high temperatures of the solar panels

— Using stand-offs and clips to ensure fixation of MLI in case of weakened
MLI adhesive tape

— Inclusion of a s/c software Braking Mode
— Solar panels exposed to excess thermal tests, multiple cycling to 170 deg.

e |n addition in a later study (finished 2010), Astrium confirmed the
validity of the aerobraking even during the nominal mission.

September 2014 Venus Express Aerobraking



Mechanical and Thermal consider

The dynamic pressure of 0.6 N/m? is less than what is required to keep a single sheet
of paper in the air. ASTRIUM considers this well within the capabilities of the
spacecraft, both with respect to direct mechanical forces and torques (on SADE etc.)
and with respect to tearing off MLI even in case of weakened tape adhesive (stand offs
and clips will retain the MLI in place).

For the thermal model ASTRIUM uses as a general rule a 10 degree margin on all
material qualification limits and an additional 10 degree margin on the thermal model.

The solar panels have a fairly high thermal inertia and therefore respond slowly to the
thermal flux. Cooling down of the panels before entering into aerobraking will assure
that the temperature will stay within limits.

The base material in the MLI is Kaptone (du Pont). Kaptone is used in several
applications at temperatures up to 400 deg C for extended duration. Kaptone does not
melt but decomposes at temperatures above 520 deg C.

The MLI qualification temperature in the ASTRIUM study concerns continuous
operation. During aerobraking the effective time at high temperature is about one
minute per pass. Possibly some effect will be noticed on the thermo-optical properties
(a and €) of the MLI on the —Z platform. The influence of this on the s/c should however
be small as this side is never facing the Sun (for extended periods) and the heat
exchange is dominated by the large area of the main engine and launch adapter.

September 2014 Venus Express Aerobraking



Thermal modelling

Just before aerothermal flux

September 2014
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Mote (1) : Depending on the plateau the sun will be illuminating the back side of the SA either at the beginning or at the end of the plateau
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Example from Mars Odessey
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Overview of Aerobraking Operations

_ ' :ltln:pitere Crossing
Thruster Transition  (aroend pericentre)
Mode P

Solar arrays are stepped
during slews to/from
braking mode attitude

S-band transmitter on
as beacon

Braking mode
duration is 6700
seconds Spacecraft is earth-
pointing except during
aerobraking

Some heaters OFF to
reduce power
consumption

ASPERA and MAG are ON,
other instruments are OFF

Venus Express Aerobraking & End of Mission Review Meeting | Adam Williams | 28/03/2014 | HSO-OPV | Slide 39 European Space Agency
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Venus Express AB & EOM Schedule ‘\\Q& eSa

6 Mar — 8 May  Operational validation (mini sims campaign)

8 May End of Routine Science Planning

9-12 May Mission Planning Reconfiguration

12 May FOP 5.9 (Aerobraking) Release

13 May Start of Aerobraking Planning

17 May End of Routine Science Ops / Spacecraft reconfiguration for AB

17 May — 18 Jun Walk-in (occasional OCMs to tune dynamic pressue)

18 Jun — 11 Jul Aerobraking (with OCMs as necessary to tune dynamic pressure)
11 Jul — 25 Jul  Pericentre Raising Manouevre (series of daily OCMs)

14 Jul — 18 Jul  Check of platform health status / reconfigure spacecraft + MPS
21 Jul — 25 Jul  Check of payload health status / possible pointing test (TBC)

29 Jul Venus Express Post-AB Review — definition of reduced science ops
11 Aug Post-AB orbit file available

Venus Express Aerobraking & End of Mission Review Meeting | Adam Williams | 28/03/2014 | HSO-OPV | Slide 41 European Space Agency
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Schematic of Aerobraking Operations

Sunday Monday Tuesday Wednesday

FIDyn

Thursday Friday Saturday

o el e Bl - B
Mean prediction duration
FIDyn

= 5.2 days
FCT
STP

FCT
Sl

PORs from VSOC weekly
as per current process

Venus Express Aerobraking & End of Mission Review Meeting | Adam Williams | 28/03/2014 | HSO-OPV | Slide 42 European Space Agency

ESA UNCLASSIFIED — For Official Use



Pericentre Altitude evolution
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Delta-v vs date
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Attitude error during Braking Mo
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Aerobraking pass #2986, 23 June
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Measurements vs. Model results m

Polar density, raw torque data
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Solar Array response to aerobraki
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Using Solar Array temperature as a proxy
for Dynamic Pressure
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Evolution of Orbital Period
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ﬂ

uture operations, post A/B

* Pericentre was lifted to above 450 km
« Limited support by ESOC due to Rosetta
o Limited but sufficient support by VSOC

« At apost A/B review 29 July the s/c and instrument status was
assess and accepted for continued operations

 No damages or degraded performances of any kind have been
found.

* As long as fuel lasts, operations will continue into 2015, pending
an agreement by SPC in November 2014.

e Operations will continue following the same principles and
methods as before the aerobraking with the (slight) complication
of being in a non 24 h orbit, but with a reduced workforce in
MOC and SOC.
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Success criteria for Venus Express “

aerobraking experiment 18/5 - 11/7 2014

e Scientific criteria

— S1. Record accelerometer da’rﬁemaximum density at a signal
' 1

to noise ratio of at least 5a 1%%um of 20 pericentre passes

below 150 km altitudf, % ®nsbie new models and studies of the
atmospheric structur@these altitudes.

— S2. Record traces of the full accelrrEter signal below 150 km for
at least ten pericentre passg "\:N? %2 pericentre altitude is below
140 km, to study spat; 'a‘ilgy and wave phenomena in the

atmosphere. 9

— S3. Record ground station tracking da#a (off pericentre) for orbital
arcs sufficient to allow calculatigg §f¥oital decay, for at least 25
orbits with pericentre pacsce W l'o5 km altitude, in order to

o __~4

determine the integrai -V per pass, to investigate the time
variability of the atmos|#ere.
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Success criteria for Venus Expres“

aerobraking experiment 18/5 - 11/7 2014

e Technical criteria

— T1. Achieve a reduction of #e¢ (Eoital period of at least 0.5
hour during the platag bétween 18 June and 11 July, to
demonstrate the efficl:ri€y of aerobraking.

— T2. Make at least six pericentre g#sses at a dynamic
pressure of at least 0.4 N/mfﬂc iging at least 3 passes at a
dynamic pressure oSl @ (9.5 N/m?, to demonstrate the
robustness of the s/(

— T3. Record temperatures of the solar panel thermal sensors
of at least ten pericentre passef‘ elow 140 km altitude, in
order to evaluate the the N #5 of aerobraking on the
solar panels and to v 4sung models.
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Success criteria for Venus Expres“

aerobraking experiment 18/5 - 11/7 2014

e Technical criteria (cont.)

— T4. Record data on s/c affitN. ng thruster firing during
Braking Mode of atge=g< tefnipericentre passes below 140
km altitude, to anal{is¢’s/C dynamic stability.

— T5. Record temperatures of —4 f#«form sensors before,
during and after aerobrc‘ &rder to evaluate possible
damage and/or det§ridy&&&n of MLI.

— T6. Record data on ne electrical performance of the solar
panels, to enable comparls E rging characteristics
before and after aerobr N0 evaluate possible
damage and/or dete n of the solar panels.
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Venus Express — still going s
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