# The MIRO EXPERIMENT ON THE ROSETTA ORBITER

Samuel Gulkis Jet Propulsion Laboratory California Institute of Technology

ESAC – December 3, 2013

# Outline

- The MIRO Science Team
- Overview of comets
- MIRO Instrument and Science Objectives

## **MIRO Co-Investigator Science Team**

#### Jet Propulsion Laboratory, California Institute of Technology

S. Gulkis (PI) M. Choukroun M. Frerking M. Allen M. Hofstadter M. Janssen L. Kamp S. Lee T. Spilker P. von Allmen

Univ. of Massachusetts F. P. Schloerb

National Central University, Taiwan W. H. Ip

#### **Observatoire de Paris - Meudon**

N. Biver
G. Beaudin
D. Bockelee-Morvan
J. Crovisier
P. Encrenaz (DVS JPL)
T. Encrenaz (DVS JPL)
E. Lellouch

Observatoire de Bordeaux

D. Despois

#### MPI fur Solar System Research P. Hartogh C. Jarchow

#### **Belgian Inst. for Space Astronomy** I. Mann (TBD)



#### 12/3/13 - 4



(Mewaldt, 1998)

S.Gulkis

12/3/13 - 5



Mumma, Weissman, and Stern, 1993

6

S.Gulkis 12/3/13 - 6

## Why the interest in comets?

- Comets offer clues to composition and processes at work during or following the accretion of the cores of the outer planets
  - Abundances of volatile materials provide information on composition and temperature of formation
  - Structure of nucleus shows how comets were assembled
- Origin of life on Earth
  - Presence of organic materials in the dust
  - Possibility that prebiotic chemistry may have taken place on dust particles
- Long history of observations and study of physical processes in comets

# Science Questions/Motivation

- How did the nucleus form in the first place?
- What can we infer about the conditions present at the time of formation?
- How are volatiles stored in the nucleus? As ices, clathrates, organic materials?
- What is the relationship between gas and dust?
- Are parent molecules distributed homogenously or heterogenously in the nucleus?
- What is the porosity of the nucleus?
- Why do jets form in certain places and not others?
- How does the comet evolve with distance from the sun?
- What can comets tell us about the formation of the solar system?

# Remnants of the Solar Nebula ?

- Orbits
  - Appear to have formed between 20-100 AU
  - Some ejected out to Oort cloud
  - Evolved in extremely cold environment
- Composition
  - Rich in volatiles suggests low temperature formation- but not too low
  - Similarity to icy interstellar grains
  - Isotopic ratios
  - Abundances(depletion of noble gases, H)
- Absence of differentiation (small size)
  - Gravitational did not appear to play a role in formation
  - Accumulation depended on condensed matter on grains

## Understanding the evolution of comets

- What are the physical properties of cometary nuclei?
- Which of the nucleus properties are primordial?
- Do comets have mantles? What factors control the rates of growth of mantles? Can the mantle properties be used to determine age?
- What fraction of the nucleus surface is covered with gas vents and mantle? What is the relationship between mantle and vent coverage?
- What are the grain coma expansion velocities?
- What conditions cause comets to outgas at large heliocentric distances? At night?
- How does outgassing vary with temperature?
- What are the subsurface temperature profiles of the nucleus?
- How does the coma form?
- What percentage of the coma gas originates from the surface? Subsurface? Grains?
- What role does nucleus shape, albedo, rotation rate, etc. have on the coma?

10

S.Gulkis

12/3/13 - 10

### Models of Cometary Nucleus(image Donn(1991))



**Dirty Snowball - Whipple(1950)** 



Fluffy Agregate - Donn(1986)







Icy-Glue -Gambosi and Houpis (1986)

12/3/13 - 11

#### **1P/Halley**

### 81P/Wild 2

### 103P/Hartley 2

#### Any Two Alike?





### Wild 2 from Stardust 2004

### Halley from GIOTTO 1986



## **Results from Stardust at Comet Wild 2**

From Sekanina et al. 2004, Science 304



- Numerous discrete jets
- Dust lies on conical sheets emanating from point like regions
- Jet originate from both illuminated and dark side of nucleus

## MIRO Instrument

## Submillimeter instruments in general

- Submillimeter, Millimeter, and Radio spectroscopy provides a powerful technique for studying rotational transitions of molecules in a cold environment
  - Very high spectral resolution provided with heterodyne receivers
  - Gas velocities and column abundances can be measured for many molecules known to be important constituents in comets and exospheres
- Simultaneous continuum and spectroscope measurements provide near surface and sub-surface temperature measurements and gas outflow rates - important for the modeling of asteroid and comet nucleus regoliths and comae
- Signal levels proportional to temperature. Very cold object objects (primitive bodies) can be detected without cooling detectors

## **Primary Measurement Objectives**

- •Absolute abundances of major volatile species
- •Fundamental isotope ratios for water
- •Surface outgassing rates
- Surface morphology
- •Nucleus Subsurface temperatures and gradients
- •Kinetic velocities of gas jets close to nucleus surface
- •Subsurface temperatures and gradients in two asteroids
- •Absence or presence of low levels of water vapor in asteroid environment

# **MIRO Science Objectives**

- Characterize the abundances of major volatile species and key isotope ratios in the nucleus ices
- To understand the processes controlling outgassing in the surface layer of the nucleus
- Study the processes controlling the development of the inner coma
- Globally characterize the nucleus subsurface to depths of a few centimeters or more
- To set limits on the amount of gas in the asteroid environment (any evidence of subsurface water ice)

#### Measurements

- Measure abundances of H2O, CO, CH3OH, NH3, 17O/16O, and 18O/ 16O
- Measure surface temperature and outgassing rates for water, carbon monoxide and other volatiles
- Measure density, temperature, and kinematic velocity
- Identify morphological features on the basis of outgassing rates and surface & sub-surface temperatures
- Measure outgassing flux of water and carbon monoxide S.Gulkis

12/3/13 - 18

## **Performance Parameters**

|                                   | Millimeter         | Submillimeter    |
|-----------------------------------|--------------------|------------------|
| Telescope                         |                    |                  |
| Diameter                          | 30 cm              | 30 cm            |
| Beam-Size (FWHM)                  | 23.7x24.7 arc min  | 7.6 arc min      |
| Foot-Print (10 km nadir distance) | 75 m               | 25 m             |
| Spectral Characteristics          |                    |                  |
| Frequency                         | 188.5-191.5 GHz    | 547.5-580.5 GHz  |
| IF Bandwidth                      | 550 MHz            | 1100 MHz         |
| Spectral Resolution               | 44 kHz (.023 km/s) |                  |
| Individual spectral bandwidth     |                    | 20 MHz (11 km/s) |
| Spectral Bandwidth/# Channels     |                    | 180 MHz/4096     |
| Radiometric Characteristics       |                    |                  |
| DSB Noise Temp.                   | 800K               | 3800K            |
| RMS Spectroscopic Senstivity      |                    | 2K               |
| (300 kHz, 2 min.)                 |                    |                  |
| RMS Continuum Sensitivity(1 sec)  | < 1 K              | < 1 K            |
| Data Collection Rate              | 2.1 kbps           |                  |

# **System Concept**



## Optical Bench Assembly



# MIRO SPECTRAL BANDS



## Comet Composition and MIRO Molecules

#### D. Bockelee-Morvan (2011) The Molecular Universe Proceedings IAU Symposium No. 280, 2011 José Cernicharo & Rafael Bachiller, eds.



H2O – most abundant molecule in coma, low temperature outgassing, 3 isotopologues

CH3OH – temperature probe

NH3 – main carrier of N

### **Measurement Capabilities and Characteristics**



#### **Measurement Capabilities**

- •Continuum temperatures in 2 bands
- High resolution spectroscopy
  - $-H_2O, CO, NH_3, CH_3OH$

#### **Characteristics**

- High spatial resolution(5 m@2km)
- High spectral resolution (44 kHz)

**Resolving Power = 1.3e7** 

• Doppler gas flow velocity

Accuracy ~10m/s

### **MIRO FLIGHT INSTRUMENT**

### TELESCOPE

### COMPUTER AND SPECTROMETER

### OPTICAL BENCH

PHASE LOCK AND IF PROCESSOR

### ULTRA-STABLE OSCILLATOR

#### **MIRO Structural Thermal Model - Sensor Unit**





### MIRO WITH DUST COVERS



12/3/13 - 27

## Schematic of Energy Balance after Voertzen(2003)



## Energy Balance and Vaporization Rate

Vaporization of the nucleus

- temperature balance determined by absorbed solar flux, energy reradiated into space, latent heat of vaporized ices, and heat transported into interior  $E_{1}(1 - A_{1})r^{-2} \exp(\theta) = e^{TA_{1}} \sum Z(T) L(T) + e^{TA_{1}} \sum Z(T) L(T)$ 

$$F_{O}(1-A_{O})r^{-2}\cos(\theta) = \varepsilon\sigma T^{4} + \sum Z(T)L(T) + \kappa_{d}\nabla T_{S}$$

Vaporization Rate

$$Z = p_{sat}(2\pi m kT)^{-1/2}$$

Expansion velocities of coma close to nucleus

- mean radial velocity at surface close to mean Maxwellian(0.5-0.66)
- molecules accelerate while expanding into vacuum
- sublimating gases drag away dust particles at the surface

### VAPOR PRESSURE OF WATER, AMMONIA, AND CARBON MONOXIDE AS A FUNCTION OF TEMPERATURE



Temperature, K

## Dependence of Production Rates on Heliocentric Distance(Delsemme, 1982)



## Pressure Broadened Spectral Line Observed with MIRO Instrument



Comet HaleBopp SMT Telescope - 28-MAR-1997 HCN(4-3): Freq = 354505.476 MHz : 100 kHz resolution: 2.6 min integration Tau: 0.3675 Tsys:874 EI: 49.11 Line Width ~ 3 km/s = 5 MHz Dv: 7.3421E-02 Hel. Df: -8.6820E-02 Fi: 351805.431 Obs: Hartogh and Hofstadter



<sup>12/3/13 - 33</sup> 

## Simulated Observations of Water (557 GHz)

V.Zakharov, D.Bockelée-Morvan, N.Biver, J.Crovisier





1000 km











Cometary Nuclei Models Are Complex – surface and subsurface measurements are needed to refine the models



Ejected gas and dust Porous dust mantle

Gas-filled porous crystalline ice layer

Crystallization front

Gas-filled porous amorphous ice layer

Amorphous water ice and frozen gas layer

Pristine composition

Prialnik, Benkoff, and Podolak (2004)

S.Gulkis 12/3/13 - 35

Subsurface T(K), composition, gas

temperatures and velocities are all measureable with

MIRO type instrument –

Models of the nucleus determine expected

parameters



### H<sub>2</sub><sup>16</sup>O 556.936 GHz Line Profiles at various mean free paths(mfp) Figure shows evolution of line shape as a function of mfp [mfp = 0.1 - 10 meter] (after Huebner, 2004)



## Expansion Velocities of Water coma at four heliocentric distances(Delsemme, 1982)



## Observed Expansion Velocites in Cometary Comae (Delsemme, 1982)



### **Relative Energy Level Populations of Water Molecule as function of distance from nucleus –**

Bensch and Bergen, 2004



### Ocean Like Water -Comet 103P/Hartley 2



12/3/13 - 41

## 47 Days Till Wakeup

## The End

## **THE BEGINNING**

## ISOTOPIC RATIOS IN COMETS, SOLAR SYSTEM, AND INTERSTELLAR

**Boice and Huebner(Weissman et al. 1999)** 

| SPECIES   | SOLAR SYSTEM           | INTERSTELLAR             | COMETS                    |
|-----------|------------------------|--------------------------|---------------------------|
| D/H       | 1-2 X 10 <sup>-5</sup> | 1.5 X 10 <sup>-5</sup>   | 3.2 X 10 <sup>-4</sup>    |
| D/H       |                        | 10-4 TO 10 <sup>-5</sup> | 1.9-3.5 X10 <sup>-4</sup> |
| 12C/13C   | 89                     | 43 +- 4                  | 95 +- 12                  |
| 12C/13/C  |                        | 65 +- 20                 | 70 TO 130                 |
| 12C/13C   |                        | 12 TO 110                | 10 T0 1000                |
| 14N/15/N  | 272                    | 400                      | >200                      |
| 160/18/0  | 498                    | 400                      | 493                       |
| 24Mg/25Mg | 7.8                    |                          | VARIABLE                  |
| 25Mg/26Mg | 0.9                    |                          | <2                        |
| 32S/34S   | 22.6                   |                          | 22                        |
| 56Fe/54Fe | 15.8                   |                          | 15                        |