

Multi-wavelength variability: Accretion and Ejection onto BHs at the fastest timescales

Piergiorgio Casella (INAF - OA Roma)

ACCRETING BHS (X-RAY BINARIES)

BH X-RAY BINARIES

ESA - Jun 2013

3/29

BH X-RAY BINARIES

ESA - Jun 2013

BH X-RAY BINARIES

Zdziarski & Gierlinski (2004)

BH X-RAY BINARIES

ESA - Jun 2013

Accretion/Ejection at the fastest timescales

WEEKS/MONTHS EVOLUTION

6/29

Accretion/Ejection at the fastest timescales

BH X-RAY BINARIES

EXPECTED AND OBSERVED FAST VARIABILITY

GX 339-4 low-luminosity Hard State

Accretion/Ejection at the fastest timescales

BH X-RAY BINARIES

EXPECTED AND OBSERVED FAST VARIABILITY

FIGURE OF MERIT: CHARACTERISTIC TIMESCALES

Light crossing	0.3 ms
Dynamical	l ms
Thermal	0.1 ms
Viscous	ls

Assuming
$$M \sim IOM_{sun}$$
, $\alpha \sim 0.1$, $\frac{h}{r} \sim 0.1$, $r \sim 6r_g$

Accretion/Ejection at the fastest timescales

AGN vs. BHXBs

CHARACTERISTIC TIMESCALES

e.g. GX 339-4

e.g. NGC 7213

Timescale	10 M _{sun}	10 ⁸ M _{sun}
Light crossing	0.3 ms	3000 s
Dynamical	l ms	10 ks
Thermal	0.1 ms	1000 s
Viscous	ls	~100 day

Assuming
$$\alpha \sim 0.1$$
, $\frac{h}{r} \sim 0.1$, $r \sim 6r_g$

Accretion/Ejection at the fastest timescales

AGN vs. BHXBs

FIGURE OF MERIT

AVAILABLE INFORMATION

e.g. XMM	10 M _{sun}	10 ⁷ M _{sun}
cts/s	100	I
cts/dynamical	0.1	100
typical observ.	10 ks	100 ks
viscous/observ.	I 0 ⁴	~0.1

for a given L/L_{Edd}

AGN vs. BHXBs

Accretion/Ejection at the fastest timescales

AGN vs. BHXBs

FIGURE OF MERIT

AVAILABLE INFORMATION

BH X-RAY BINARIES

ESA - Jun 2013

FLUCTUATIONS PROPAGATE THROUGH THE INFLOW...

Lyubarskii (1997); Kotov et al. (2001); Arevalo & Uttley (2006); ...

...THEN REFLECTED FROM CORONA TO DISK.

Wilkinson & Uttley et al. (2009) Uttley et al. (2011) Cassatella et al. (2012 a,b)

JET FAST VARIABILITY?

JET FAST VARIABILITY?

THE <u>WELL KNOWN</u> MISSING-ENERGY PROBLEM

ENERGY LOSSES ACT VERY FAST:

WE SHOULD NOT SEE THE RADIO JET

JET FAST VARIABILITY?

THE WELL KNOWN MISSING-ENERGY PROBLEM

RE-HEATING FROM INTERNAL SHOCKS SHELLS WITH DIFFERENT VELOCITY

GRB jet emission theory \longrightarrow *blazars (Spada et al. 2001)*

recent works on XBs: Jamil, Fender & Kaiser 2010; Malzac 2013

RE-HEATING LINKED TO INFLOW VARIABILITY?

BEST TO STUDY VARIABILITY: X-RAY BINARIES

JET FAST VARIABILITY

ESA - Jun 2013

GX 339-4 - ISAAC@VLT - 62.5MS - K=12.5

JET FAST VARIABILITY

GX 339-4 - ISAAC@VLT - 62.5Ms - K=12.5

VARIABILITY AT > 5 Hz : EMITTING REGION < $6 10^9 \text{ CM}$

IF THERMAL EMISSION, UNIQUE SOLUTION (BLACK BODY)

-> IT WOULD EMIT MUCH MORE IN X-RAYS

DEFINITELY NOT THERMAL

(Casella et al. 2010)

JET FAST VARIABILITY

GX 339-4 - ISAAC@VLT - 62.5Ms - K=12.5

THEY CORRELATE: IT'S A JET INFRARED LAGS X-RAYS BY 0.1 SECONDS

-> PHYSICAL MEASUREMENTS

(Casella et al. 2010)

JET FAST VARIABILITY

No. 1,(Jy)

GX 339-4

X-RAYS + OPTICAL + IR

GX 339-4

DIFFERENT ACCRETION REGIMES

GX 339-4

CORRELATION

IR LEAD X-RAYS

INFLOW (ON TOP OF DISC)

JET BASE (TRANSIENT ONE)

WHICH INSTRUMENTS?

- (20% OF) RXTE: ~50 CTS/S STATISTICS LIMITED
- ISAAC @ VLT: ~50.000 CTS/S TECHNOLOGY LIMITED (HAWK-I)
- New TECHNOLOGIES Growing field
 - GETTING RID OF THAT READOUT NOISE...
 - EMCCDS ("EXPANDED" NORMAL OPTICAL CCD)
 - …AND WIDENING THE ENERGY RANGE
 - HGCDTE E-APD (MERCURY-CADMIUM-TELLURIDE AVALANCHE PHOTODIODE DETECTORS)
 - MKID (MICROWAVE KINETIC INDUCTION DEVICES)
 - STJ (SUPERCONDUCTING TUNNEL JUNCTIONS)

ASTROSAT: X-RAYS (+ UV) (2014)

LOFT: POPULATION STATISTICS + FULL OUTBURST COVERAGE

+ MUCH BROADER ENERGY RANGE

available

A MISSION PROPOSAL SELECTED BY ESA AS A CANDIDATE CV M3 MISSION

DEVOTED TO X-RAY TIMING AND DESIGNED TO INVESTIGATE THE SPACE-TIME AROUND COLLAPSED OBJECTS

CONCLUSIONS - FUTURE

Fast variability from the inner regions

AT OTHER WAVELENGTHS THAN X-RAYS

WE OBSERVE MATTER ALONG THE JET.

TRACKING THE VARIABILITY >> GEOMETRY CONSTRAINTS

PHYSICAL QUANTITIES

THEORETICAL EFFORTS

VARIABLE JET EMISSION - INTERNAL SHOCKS IMPLEMENTED:

SELF-CONSISTENT CODE, SPECTRAL EVOLUTION OF EACH INTERNAL SHOCK JOINED APPROACHES: Pe'er & Casella (2009) + Jamil et al. (2010)

New Technologies/Instruments at all wavelengths