

Science from the Venus night side: Nightglow & lightning

Antonio García Muñoz Research Fellow ESA/RSSD, ESTEC, Noordwijk, The Netherlands

Dayglow, nightglow & aurora

Atmospheric luminescence
Defined by their excitation mechanisms

Dayglow: (Nearly)-direct solar-photon interaction,
 e.g. CO₂+photon → CO(a) + O
 Aurora: Extra-atmospheric particles,
 e.g. CO₂+e → CO(a) + O

Nightglow: Exothermic chemical reactions.
 A + B \rightarrow C + D*
 D \rightarrow E + photon

Nightglow. Usefulness.

Venus nightglow. 1st evidence.

• Venus nightglow spectrum:

Observed on Earth (N_2/O_2) , Venus and Mars (CO_2)

O₂ nightglow excitation

VIRTIS on Venus Express

- Visible and IR spectrometer.
- Pl's: G. Piccioni & P. Drossart.
- Spectral coverage: 0.4-5 μm.

- Off-pericenter: nadir looking.
- Near-pericenter: limb-viewing

ESAC, Villanueva de la Cañada, Spain, 25th April 2013

ESAC, Villanueva de la Cañada, Spain, 25th April 2013

O₂ nightglow with VEx/VIRTIS

esa

Piccioni et al., JGR, 2009

OH Meinel bands with VEx/VIRTIS

OH nightglow with VEx/VIRTIS

Piccioni et al., A&ALs, 2008

OH Meinel bands recently discovered on Mars!! Clancy et al. (*submitted*)

NO nightglow with VEx/VIRTIS

NO nightalow with VEx/VIRTIS

ESAC, Villanueva de la Cañada, Spain, 25th April 2013

esa

O₂ nightglow with VEx/VMC

Venus Monitoring Camera (VMC), PI: W.J. Markiewicz Pupil < 1 cm, 17° FOV

O₂ nightglow with VEx/VMC

VMC O₂ nightglow images

Orbit 1026; 10 February 2009 1 image every 5 min; Pre-periapsis sequence

VMC <u>NIR1</u> and <u>NIR2</u> images

NIR1: 948-982 nm

NIR1: 988-1025 nm

Selection and treatment of images

- Full public archive of VMC images in the VIS channel.
- Considered orbits 24 (May 2006) to 2099 (Jan 2012).
- Viewing: limb (airmass x 50), nightside, t_{expo}=30 secs

- Images with *acceptable* quality (i.e. w/o much astray light).
- Images were cleaned and radiometrically calibrated.
- For scientific analysis: 114 images from 36 orbits.

Selection and treatment of images

- For scientific analysis: 114 images from 36 orbits.
- 524 bins. Binning improves S/N.

• VMC coverage expands on Venera and PVO efforts, either in temporal coverage or vertical resolution

Spatial coverage of bins

Non-blue: VMC bins Blue: simultaneous VIRTIS data

Northern/southern hemispheres, mostly within 2 hours from midnight

Visible nightglow intensity vs. latitude

Black: VMC bins

Blue: 1-year average of VIRTIS data at 1.27 μm (scaled by 1/200) Red: 1-year average of VIRTIS visible data

Interpretation:

- 1) General decay polewards from equator (\approx 150 kR).
- 2) Mild North/South background bias likely due to spatial resolution.
- 3) Events of high intensity (≈500 kR)

Simultaneous, co-located VMC & VIRTIS data

(scaled by 1/200) *seem* correlated

Lightning on Venus

Lightning in context: Solar System & beyond

Relevance: Fundamental, chemistry, ...

Definite answer on Venus remains controversial

Electromagnetic pulses

Venera 11-14 (10-80 kHz), Generated by the craft?
PVO (0.1-30 kHz) @ 100 Hz (whistler modes?), Correlation with topography?
Galileo (0.1-5.7 MHz),

Too remote observation?

- Cassini flybys (0.125-16 MHz): no detection, but detection at Earth
- VEx magnetometer: '<u>clear</u>' evidence, terrestrial frequency, high dayside activity, whistler modes,...
 ...still controversial though...

Electromagnetic pulses

- Venera 11-14 (10-80 kHz), Generated by the craft?
- PVO (0.1-30 kHz) @ 100 Hz (whistler modes?), Correlation with topportaphy?
 Galileo (0.1-5.7 MHz),
 - Too remote observation?
- Cassini flybys (0.125-16 MHz): no detection, X but detection at Earth
- VEx magnetometer: '<u>clear</u>' evidence, terrestrial frequency, high dayside activity, whistler modes,...?
 still controversial though...

Optical observations

ESAC, Villanueva de la Cañada, Spain, 25th April 2013

Optical observations

PVO: star tracker, broad band photometry However, viewing geometry was not ideal

Ground based observations: Hansell et al. 1995

Myself at Calar Alto & La Palma

VEx contribution??

Mission planning: VIRTIS/VMC might contribute

Huge database of night-time observations

Enough sensitivity to capture flashes

Appropriate spectral coverage in the visible

- VIRTIS, with spectral resolution.
- VMC, with broadband filters.

...just started...