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& Two Chandra HETGS observations of GRO J1655-40, 20 days apart
& Obs 1: a single line. Obs 2: a dense forest of lines!
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Big Questions

& What do high-resolution X-ray spectra tell us about accretion?

& What are the links between accretion, ejection, and radiation

processes?

& Why (and how) are winds and other outflows important?
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Outline

& Introduction to accretion in X-ray binaries
& Crash course in accretion disk winds:
& History and Physics

& Accretion disk winds in GRO J1655-40, 4U 163047, and GRS
19I§+I0§

& Show how we can use high-resolution X-ray spectroscopy to find

physical links between key accretion processes

& Winds are an important, evolving part of BH accretion flows
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X-ray Binaries

Infalling gas

Compact cbject
(white dwart, neutron
star, or black hole)

Accretion disk

......

"Dl ==

Radiation from
T accretion disk

Crbital plane of
binary star system

& Compact object accreting gas, usually in the form of a disk,

from a companion star

& Accretion converts gravitational potential energy into
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a | GRS 1915+105
GRS 1915+10% LMC X-4
& Black Hole & Neutron Star
& Low-Mass Companion & High-Mass Companion
& Extreme, fast variability & Slow, periodic variability
& Absorption Lines & Emassion Lines
& Accretion Disk Wind & Stellar Wind
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Unitying Accretion Physics

& Goal: Find relationships between changes in the X-ray luminosity, mass
accretion rate, mass ejection rate, environment

& How does the accretion flow produce radiation? How does radiation
affect the accretion rate?

& Broadband X-ray spectroscopy (see also BH spin; McClintock+ 2006)

& How does the X-ray luminosity drive outflows? How do the power, mass
of outflows compare to the accretion rate?

& High-resolution X-ray spectroscopy
& How do accretion processes influence the environment?

& Combine above with photoionization studies
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Winds: Radiation Drives Outflows
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& Hot gas flowing off the disk

Photons cm~* s~! keV~!
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& Typically launched and ionized

by intense radiation fields .

& Vieihlo i hrob- s S | |
Visible in high-resolution X-ray i Atomic Physics! |
spectm ﬁom Chandra > 50

Energy (keV)

S SN N



What are they?

Ionized outflow from the accretion disk, driven by radiation, thermal

pressure, or mzzgnetz’cprocesses

How do we see them?

Blueshifted ionized absorption lines in X-ray spectra (1000 km/s)

Why are they important?

Very significant dynamical component: can suppress relativistic jets (Neilsen

¢ Lee 2009)

Carry most of the infalling matter away from the black hole! (e.g. Netlsen,

Remillard, & Lee 2011; Ponti+ 2012; King+ 2012)
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A Brief History of
Winds in XRBs

As of 3 October 2009
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A Brief History of Winds
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& Brandt & Schulz (2000): Chandra HETGS, Circinus X1

& First X-ray P-Cygni lines from an XR B: outflowing gas
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& Lee et al. (2002): Chandra HETGS, GRS 1915+105 i

& Ionized outflow, Mour>Min?

- v ' - - g ) ( \_I F ) N £ '/ \_' Y aah g D ( \I 3 " : o .. . g
L) . \ \0_ ;-/-, ; l ‘/.-l’ :\v. nr. \—\ ‘{.: :.\'. ’-/.. 3 Q/.I' :\t_ ;-/-, \ ' ‘/.: :\v. n/. \ ' ‘/.: \-\'. ’-/—.
» e N o Ay e Y » e N 2w Ay e Y ' N an Y AT o Y o » e N o Ay e Y » e N 2w Ay e Y ' N an Y AT o Y o



A Briet History of Winds

Credit: NASA/CXC A. Hobart
& Neilsen & Lee (2009): Chandra HETGS, GRS 1915+105

& Winds may quench jets in GRS 1915 by altering flow of gas
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A Briet History of Winds
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& Miller et al. (2006, 2008): Chandra HETGS, GRO 165540

& Only definitive observational evidence for MHD winds in X R Bs
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Disk - Jet Connection
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Where are the Winds?

& Three years ago:

& Clear that there might be some links between winds
and relativistic jets (see also Miller+ 2008, Lee+ 02)

& The role of winds in black hole outbursts wasn’t
known, but possibly significant

& Particularly important to understand the physics of

tonized accretion disk winds and their formation
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The Physics of Disk
Winds

As seen by an X-ray observer
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How Winds Work
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How Winds Work

& Three possible origins: & Wind properties:

& Radiation pressure (UV line & Low-ish jonization <
driving) 103

& Thermal pressure (i.e. & Low-ish density
irradiation, Compton (<10374), far from BH
heating) 1045 Ry, 107 cm)

& MHD processes & Can be more dense,

closerto BH

& Where is the wind, how ionized
15 1t, and how dense s 1t?
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How Thermal Winds Work

& Broadband continuum:

Compton beats electrons in 0.80 x 10'7 My

the outer disk Rc Te M, cim

& Sound speed at the Compton

temperature exceeds escape

speed 1 OOO hvl, dv
L e= 55
4kp fo L,dv

& Expanding wind, expect

OU~Vesc

R A = A Sl A
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How MHD Winds Work

& Do appear in simulations (e.g
McKinney)

& Driven by magnetocentri-
fugal effects (B-P '82) or

magnetic viscosity; no single o
theoretical sense T
& Unclear if winds should A |/
escape or not, follow B lines |/
—
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Thermal vs MHD Winds

£ Not obvious that these winds should have vastly
different lines

& Many physical factors influence the observability of
absorption lines (along with S/N, of course)
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How Winds Work
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@& Lumuinoosity: more
photons per electron
means hotter, more
ionized wind

& Broadband spectrum:
a harder spectrum
means hotter, more
1onized wind; sets
which 1ons visible at
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& Hreternt/Colurrn
Denyity: at ixed
10n1zation, more gas
in the line of sight
means stronger lines

& Curve of Growth:
equivalent widths
increase with 1onic
columns; 1onization,

abundance
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Tonzization Balance

% How Winds Work %
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%
%
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Photoionization

& Coupling between X-ray emission and plasma conditions:

photoionization

& Sensitive to gas density and temperature
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Why are we doing this again?

Observables

& Intricate connections between the local radiation field, the

properties of the gas, wind physics, and the observed lines
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Measuring Density
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& Very bard to constrain, best done with density-sensitive atomic lines,
e.g. Fe XXI111

& (Above) 2005 GRO F1655-40: Miller+ (20064, 2008), density
nz10' cm3 (compared to a nominal 1072 cm3).

& Rules out Compton heating and radiation pressure as dominant, E
leaving MHD! Only direct evidence for MHD winds in XRBs |
AT it




Back to Our Puzzle

MHD!
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& Two Chandra HETGS observations of GRO J1655-40, 20 days apart
& Obs 1: a single line. Obs 2: a dense forest of lines!
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Where Did the Lines (Go?

& Why did the first Chandra observation show only one

[tne, when >100 lines were visible 20 days later?

& Hard state vs soft state: ionization important? Wind

present but “fried” by a barder ionizing spectrum?
& Wind really evolving throughout the outburst?

& Details in Neilsen & Homan 2012, ApT, 750, 27
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Can changes in the ionizing
spectrum alone explain the
difterences in the lines?

If the wind were the same in both

observations, would the lines be the same?



Testing Ionization: Round 1
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Testing Ionization: Round 2
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& A quantitative version of test 1 with XSTAR: ‘ 2
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& If the absorber is physically the same but ionized by a different ‘
(harder) continuum, does that explain the different lines?

& Use previous results for wind properties (Kallman+ 09) :

SA TN TN TN 7

[~
[
-
- .

;
D
b,
I
;
.
;
i
b,
l
;
)
;
i
:
l
;
)
;
i
b,
I
;
> 4
.
i
b,
l
;
)
;
i
:
l
;
)
;
i
b,
I
;
)
.
i
b,
l
;



TP

Photons cm™2 s~ keV™!

Ratio

Energy (keV)

s Built photoionization models based on obs. 2 (Miller+ 06,08; Kallman+ 09)
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Ionization Explains it All?

& Definstely not!

& If the wind were the same, the lines would still be
there

& The wind must have evolved significantly during the

outburst! (See also Blum et al. 2010, Ponti et al. 2012)

& From hard to soft state, density increased by 25x-300x!
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Wmds are Ublgultous
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& Winds dominate the “state transition” phase of the outburst,

where the accretion flow changes and steady jets disappear
& Analysis suggests that in general, winds evolve during outburst!
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Coincidence? I Think Not!

& larget of Opportunity
observations of 4U 163047

& Based on Ponti 2012, designed

to catch a disk wind
& Very successful!!!

& Winds reliably appear during

this state transition
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Continued Monitorin

& Lots of

multiwavelength
data

& Chandra, Suzaku,
XMM, ATCA

& Nezlsen, Ponti, Coriat,

Fender, Mzller-jones,
Dsiaz 1rigo

MAXI 2-20 keV (Crab)
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Implications

Winds are preferentially launched at a
certain phase of BH outbursts... so what?



X-ray Brightness

Time

Credit: NASA/CXC/A. Hobart



Credit: NASA/CXC/A. Hobart

Chandra observations of
this ‘heartbeat’ reveal a

disk wind!

Strong, strange 50-second pulse

observed by RXTE
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Accretion Disk Wind _

TTTTTTTTTTTTTTTTTTTY T Y r Y T T T

0.2

0.1

Photonscm—* s keV

P4
-4 -2 0 2 40.05

Energy (keV)

Count Rate/100°
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The Amazing Massive Wind

& Each beartbeat blasts more gas off Neilsen et al. 2011, 2012d

the disk

2 2D 3

& R-10™ cm, but variable on time

Absorbed Flux

s L D

scales of § seconds

& Arguments from geometry,

Count Rate/10°

variability, line properties imply
M,,,.:~25Mprr (Neilsen,
Remz'lldra’, é:Lee ZOII) Time Since Peak (s)

50

& Has a buge effect on the disk & Other XRBS too! Ponti et al (2012)
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Massive Winds!

4U1630-47 +
GROJ1655-40
H1743-322

GRS1915+105 Ponti+ 2012
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Implications
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& No corncidence that winds appear when they do

& Luminosity rises, tlluminates disk, drives gas away
@& Changes BH mass, energy budget
& State transition, jet turns off

R A = A Sl A
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Summary

t In GRO J1655-40, accretion disk winds evolve significantly during
outburst (Neilsen & Homan 2012)

v This evolution is universal! (Archival studies: Ponti+ 2012; 4U

1630-47: Neilsen+ 2012e, in prep)
v Significant because:
& Winds may dominate the mass budget (e.g. Neilsen+ 2011)

& Winds are not a part of the conventional understanding of
BH outbursts

Would be great to see winds in theory/phenomenology of state transitions
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Future Work

& Are winds actually driven by irradiation of the outer disk or magnetic

frelds?

& Keep looking for connections between radiation and outflows

& Do winds suppress/quench relativistic jets or do they appear after the
jets are gone?

& Can we see this in action?
& Is there evidence of the same processes in AGN?

& Partial, but hard to scale outflow microphysics across mass scale
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