What a Nice model

Density

Early Solar System

KOALA

Conclusion

The asteroids and the early Solar System

B. Carry European Space Agency

1/25 B. Carry, ESA, 2012-10-104

- 4 🗗 →

What a Nice model

Density

Early Solar System

KOALA

Conclusion

Resume of planetary formation

2/25 B. Carry, ESA, 2012-10-104

 ${\small Step-by-step}$

- a. Gas & dust cloud contracts
- b. Disk forms
- c. Rotation, accumulation @ center
- d. A star is born
- e. Accretion within the disk
 - f. Planetary system

What a Nice model

Density

Early Solar System

KOALA

Conclusion

Resume of planetary formation

2/25 B. Carry, ESA, 2012-10-104

 ${\small Step-by-step}$

- a. Gas & dust cloud contracts
- b. Disk forms
- c. Rotation, accumulation @ center
- d. A star is born
- e. Accretion within the disk
 - f. Planetary system

Planetary formation	What a Nice model	Density	Early Solar System	KOALA	Conclusion

— Resume of planetary formation

Step-by-step

- a. Gas & dust cloud contracts
- b. Disk forms
- c. Rotation, accumulation @ center
- d. A star is born
- e. Accretion within the disk
 - f. Planetary system

Planetary formation	What a Nice model	Density 000000	Early Solar System	KOALA 000000	Conclusion
_					

Interest of asteroids

- 1. Large population
 - 600 000 objects (several millions)
 - Sample the whole Solar System [1–100 AU]
 - Sample all the compositions [rocks \rightarrow ices]

2. Primitive population

- Small objects [km]
- Internal energy \approx null
- No endogenous activity

Direct witnesses of the early Solar System

Planetary formation	What a Nice model	Density	Early Solar System	KOALA

— The 1982's view

1. Asteroid taxonomy

- Reflectance
- Albedo
- 24 classes

2. Strong **gradient** in **1 AU**

- X : Iron cores
- V,A : Crust & Mantle
- S : Melted silicates
- C : Most primitive
- D,T : Comet nucleus ?

3. Paradigm from 1982

- Survey of 800 asteroids
- Visible spectrometry
- ▶ In-situ formation

4/25 B. Carry, ESA, 2012-10-104

Conclusion

Bus-DeMeo Taxonomy Key

C-complex

X-complex

End members

Planetary formation	What a Nice model	Density	Early Solar System	KOALA

— The 1982's view

1. Asteroid taxonomy

- Reflectance
- Albedo
- 24 classes

2. Strong **gradient** in **1 AU**

- X : Iron cores
- V,A : Crust & Mantle
- S : Melted silicates
- C : Most primitive
- D,T : Comet nucleus ?
- 3. Paradigm from 1982
 - Survey of 800 asteroids
 - Visible spectrometry
 - ► In-situ formation

4/25 B. Carry, ESA, 2012-10-104

Conclusion

.....

Planetary formation	What a Nice model	Density 0000000	Early Solar System	KOALA	Conclusion
— The 19	982's view =				

- 1. Asteroid taxonomy
 - Reflectance
 - Albedo
 - 24 classes

2. Strong gradient in 1 AU

- X : Iron cores
- V,A : Crust & Mantle
- S : Melted silicates
- C : Most primitive
- D,T : Comet nucleus?

3. Paradigm from 1982

- Survey of 800 asteroids
- Visible spectrometry
- ▶ In-situ formation

Planetary formation	What a Nice model	Density 000000	Early Solar System	KOALA	Conclusion
— The 19	982's view =				

- 1. Asteroid taxonomy
 - Reflectance
 - Albedo
 - 24 classes

2. Strong gradient in 1 AU

- X : Iron cores
- V,A : Crust & Mantle
- S : Melted silicates
- C : Most primitive
- D,T : Comet nucleus?

3. Paradigm from 1982

- Survey of 800 asteroids
- Visible spectrometry
- In-situ formation

Planetary formation	What a Nice model	Density	Early Solar System	KOALA	Conclusion
Somo (non questi	onc —			

• Late Heavy Bombardment •

Excess cratering @ 3.8 Gy Thick disk for accretion Tiny fraction remains • Planetary migration •

Hot Jupiters Migration within disk Solar System ?

Planetary formation	What a Nice model	Density 000000	Early Solar System	KOALA	Conclusion
The (Frand Tack (model —		

A. Grand Tack – 100 kyr

1013

- Jupiter inward migration
- Stopped by Saturn
- Inner Solar System

B. The Nice Model - 700 Myr

- Jupiter-Saturn interaction
- Neptune pushed out
- Outer Solar System

Overall result

- Complete mixing
- Removal of 99% mass

Planetary formation	What a Nice model	Density	Early Solar System	KOALA	Conclusion
	. —				

— The Grand Tack & Nice model

Gomes et al. 2005

- A. Grand Tack 100 kyr
 - Jupiter inward migration
 - Stopped by Saturn
 - Inner Solar System

B. The Nice Model - 700 Myr

- Jupiter-Saturn interaction
- Neptune pushed out
- Outer Solar System

Overall result

- Complete mixing
- Removal of 99% mass

In-situ formation?

In-situ formation?

Number instead of mass - Only largest asteroids

7/25 B. Carry, ESA, 2012-10-104

Planetary formation	What a Nice model	Density 0000000	Early Solar System	KOALA	Conclusior
	ra of all_sky	SURVOVO	e ———		

1. Number of discoveries sky-rocketed in 30 years

- 10,000 in 1982 ... 600,000 in 2012
- Completeness vastly improved (2–5 km)
- Dynamic models

Compositional information available for thousands of asteroids
 SDSS : visible colours for 100,000 asteroids (vs 800)
 WISE : albedo for 150,000 asteroids (vs 2000)
 Large scale to compare

Density is needed to convert numbers in mass
 Limiting factor

How do we measure density ?

Planetary formation	What a Nice model	Density 0000000	Early Solar System	KOALA	Conclusion
— The era	of all-sky	survevs			

1. Number of discoveries sky-rocketed in 30 years

- 10,000 in 1982 ... 600,000 in 2012
- Completeness vastly improved (2–5 km)
- Dynamic models

2. Compositional information available for thousands of asteroids

- SDSS : visible colours for 100,000 asteroids (vs 800)
- WISE : albedo for 150,000 asteroids (vs 2000)
- Large-scale taxonomy

3. **Density** is needed to convert numbers in **ma**

How do we measure density?

Planetary formation	What a Nice model	Density 0000000	Early Solar System	KOALA 000000	Conclusio
— The e	a of all-sky	survey			

1. Number of discoveries sky-rocketed in 30 years

- 10,000 in 1982 ... 600,000 in 2012
- Completeness vastly improved (2–5 km)
- Dynamic models

2. Compositional information available for thousands of asteroids

- SDSS : visible colours for 100,000 asteroids (vs 800)
- WISE : albedo for 150,000 asteroids (vs 2000)
- Large-scale taxonomy

3. Density is needed to convert numbers in mass

- Limiting factor
- How do we measure density ?

Planetary formation	What a Nice model	Density ○●○○○○○	Early Solar System	KOALA	Conclusion
— How do	we measur	e densi	ity ?		

What a Nice model

Density

Early Solar System

KOALA

Conclusion

— Mass measurements

Gravitational interaction

- Asteroid Probe
- Precise but rare
- 2. Satellites
 - Asteroid Satellite
 - Precise and about common
- 3. Deflection
 - Asteroid Asteroid
 - Low precision but common
- 4. Ephemeris
 - Asteroid Everything
 - Low precision but common

What a Nice model

Density

Early Solar System

KOALA

Conclusion

— Mass measurements

Gravitational interaction

- 1. Flyby
 - Asteroid Probe
 - Precise but rare

2. Satellites

- Asteroid Satellite
- Precise and about common
- 3. Deflection
 - Asteroid Asteroid
 - Low precision but common
- 4. Ephemeris
 - Asteroid Everything
 - Low precision but common

Planetary formation	What a Nice model	Density ○○○●○○○	Early Solar System	KOALA	Conclusion
— How do	we measur	e densi	ty ?		

Planetary formation	What a Nice model	Density 0000000	Early Solar System	KOALA	Conclusion
— Volume	measureme	ents —			

$$\rho = \frac{\mathcal{M}}{\mathcal{V}}$$

- Masses : 287
- Diameters :
 - IRAS : 2228
 - AKARI : 10 000
 - WISE : 150 000
 - Gaia : 10 000

Planetary formation	What a Nice model	Density	Early Solar System	KOALA	Conclusior
— Volume	measureme	onts —			

$$\rho = \frac{\mathcal{M}}{\mathcal{V}} \qquad \frac{\delta\rho}{\rho} = \sqrt{\left(\frac{\delta\mathcal{M}}{\mathcal{M}}\right)^2 + \left(\frac{\delta\mathcal{V}}{\mathcal{V}}\right)^2} \\ \bullet \text{ Masses : 287} \qquad = \sqrt{\left(\frac{\delta\mathcal{M}}{\mathcal{M}}\right)^2 + 9\left(\frac{\delta\mathcal{R}}{\mathcal{R}}\right)^2}$$

- Diameters :
 - IRAS : 2228
 - AKARI : 10 000
 - WISE : 150 000
 - Gaia : 10 000

Planetary formation	What a Nice model	Density 0000000	Early Solar System	KOALA	Conclusion
	measureme	ents —			

$$\rho = \frac{\mathcal{M}}{\mathcal{V}} \qquad \frac{\delta\rho}{\rho} = \sqrt{\left(\frac{\delta\mathcal{M}}{\mathcal{M}}\right)^{2} + \frac{\delta\mathcal{M}}{\mathcal{M}^{2}}} = \sqrt{\left(\frac{\delta\mathcal{M}}{\mathcal{M}}\right)^{2} + \frac{\delta\mathcal{M}}{\mathcal{M}^{2}}}$$
• Masses : 287

$$\sqrt{\left(\frac{\delta \mathcal{M}}{\mathcal{M}}\right)^{2} + \left(\frac{\delta \mathcal{V}}{\mathcal{V}}\right)^{2}}$$
$$\sqrt{\left(\frac{\delta \mathcal{M}}{\mathcal{M}}\right)^{2} + 9\left(\frac{\delta \mathcal{R}}{\mathcal{R}}\right)^{2}}$$

- Diameters :
 - IRAS : 2228
 - AKARI : 10 000
 - WISE : 150 000
 - Gaia : 10 000

The Volume is (easily) the Limiting Factor

Planetary formation	What a Nice model	Density 0000000	Early Solar System	KOALA	Conclusion
C					

Planetary formation	What a Nice model	Density 0000000	Early Solar System	KOALA	Conclusion
6	C				

Planetary formation	What a Nice model	Density 0000000	Early Solar System	KOALA	Conclusio
•	6				

— Summary of accuracy

15/25 B. Carry, ESA, 2012-10-104

Adapted from Gradie and Tedesco, 1982

Composition distribution revisited is radically different !

- Almost complete mix everywhere
- Absence of mixing in Hilda & Trojan
- Evidences for Grand Tack and Nice models

 Planetary formation
 What a Nice model
 Density
 Early Solar System
 KOALA
 Conclusion

 Open questions

S-complex S-complex C-complex Carbonaceous chondrites? Carbonaceous chondrites? Carbonaceous chondrites? S-complex Nickel-iron - Stony iron - Entatite Carbonaceous chondrites? S-complex Nickel-iron - Stony iron - Entatite Carbonaceous chondrites? S-complex Nickel-iron - Stony iron - Entatite Carbonaceous chondrites? S-complex S-comple

No interpretation for 50%

• Meteorite & asteroid spectroscopy

- Now based on 0.5–2.5 μ m
- Wider spectral range : $3-5 \& 5-40 \ \mu m$
- Albedo & thermal inertia

- More asteroid analogs
 - Laboratory experiments
 - Recovery campaigns

• Density determinations

- ▶ Binary systems (now ~50/200)
- Accurate volume determination

http://smass.mit.edu/busdemeoclass.html

Planetary formation	What a Nice model	Density 000000	Early Solar System	KOALA ••••••	Conclusion
	ate volume	determi	nation ===		

Direct measurements

• WYSIWYG ≠ model-dependent

- Disk-resolved imaging
- Stellar occultations

2. Realistic 3-D shape

- Assumptions \Rightarrow **biases** •
- Concavity ⇔ Volume
- Lightcurves (dense & sparse)

Planetary formation	What a Nice model	Density 0000000	Early Solar System	KOALA ••••••	Conclusion					
	to volumo	dotormi	nation —							

Direct measurements

- WYSIWYG ≠ model-dependent
- Disk-resolved imaging
- Stellar occultations

2. Realistic 3-D shape

- Assumptions \Rightarrow **biases**
- Concavity ⇔ Volume
- Lightcurves (dense & sparse)

Geometry completeness 3.

- Extensive approach
- Mid-IR radiometry
- Interferometry
- Radar echoes

Not so great....

Planetary formation	What a Nice model	Density 0000000	Early Solar System	KOALA 00000	Conclusion
— The coi	ncept of KC)ALA =			

Planetary formation	What a Nice model	Density 0000000	Early Solar System	KOALA	Conclusion
— Accurae	cy of KOAL	A			

Pre-flyby model KOALA

Carry et al. 2010

vs. Rosetta Shape : 2 km RMS

Carry et al. 2012

 $\begin{array}{l} \mbox{Accuracy} \\ \mbox{Diameter} \sim 2\% \\ \mbox{Volume} \leq 15\% \end{array}$

What a Nice model

Density

Early Solar System

KOALA

Conclusion

— Accuracy of KOALA

Planetary formation	What a Nice model	Density 000000	Early Solar System	KOALA	Conclusion
— On-goi	ng research.				

1. Lightcurves & Stellar occultations

- Interactions with amateur community
- Now 200 convex shape models available
- ► Size determination for 25%

2. Disk-resolved imaging

- AO camera on VLT, Keck, Gemini
- KOALA shape modeling
- ▶ Working on ~30 objects

3. Adding data modes in KOALA

- Mid-infrared (thermal) radiometry
- Interferometry fringes
- Radar echoes
- Getting ready for massive inputs

^{23/25} B. Carry, ESA, 2012-10-104

Planetary formation What a Nice model Density Early Solar System KOALA Conclusion **On-going research...**

2010-12-30T04:51:00.0 UTC

Lightcurves & Stellar occultations 1.

- Interactions with amateur community
- Now 200 *convex* shape models available
- Size determination for 25%

Disk-resolved imaging 2.

- AO camera on VLT, Keck, Gemini
- KOALA shape modeling
- Working on \sim 30 objects

3. Adding data modes in KOALA

- Mid-infrared (thermal) radiometry
- Interferometry fringes
- Radar echoes
- Getting ready for massive inputs

Planetary formation What a Nice model Density Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion

• Spin

- 10⁵ objects
- Accretion epoch
- YORP, Yarkovsky (non $\vec{\mathcal{G}}$)

• Surface properties

- ▶ 10⁴ 10⁵ objects
- Albedo, reflectance
- Link with meteorites

• Shape & Size

- ▶ 10⁴ 10⁵ objects
- Size-freq. distribution
- Dynamics & Collisions

- Density
 - ▶ 10² –10³ objects
 - Composition
 - Internal structure

• Asteroids are remnants from the early Solar System

- \blacktriangleright Distribution of composition \rightarrow initial conditions
- Evidences for planetary migration like many exoplanets

• Asteroid composition remains elusive in many cases

- Half of the classification lacks compositional interpretation
- Still a lot of observational constraints needed

• Surface and physical properties mostly unknown

- \blacktriangleright Albedo, thermal inertia, density \rightarrow Composition
- ▶ Period, spin, shape → YORP & Yarkovsky