The asteroids and the early Solar System

B. Carry
European Space Agency
Resume of planetary formation

Step-by-step

a. Gas & dust cloud contracts
b. Disk forms
c. Rotation, accumulation @ center
d. A star is born
e. Accretion within the disk
f. Planetary system
Resume of planetary formation

Step-by-step

a. Gas & dust cloud contracts
b. Disk forms
c. Rotation, accumulation @ center
d. A star is born
e. Accretion within the disk
f. Planetary system
Resume of planetary formation

Step-by-step

a. Gas & dust cloud contracts
b. Disk forms
c. Rotation, accumulation @ center
d. A star is born
e. Accretion within the disk
f. Planetary system
Interest of asteroids

1. **Large population**
 - 600,000 objects (*several millions*)
 - Sample the whole Solar System [1–100 AU]
 - Sample all the compositions [rocks \rightarrow ices]

2. **Primitive population**
 - *Small* objects [km]
 - Internal energy \approx null
 - No endogenous activity

\triangleright Direct witnesses of the early Solar System
The 1982’s view

1. Asteroid taxonomy
 - Reflectance
 - Albedo
 - 24 classes

2. Strong gradient in 1 AU
 - X : Iron cores
 - V,A : Crust & Mantle
 - S : Melted silicates
 - C : Most primitive
 - D,T : Comet nucleus?

3. Paradigm from 1982
 - Survey of 800 asteroids
 - Visible spectrometry
 - In-situ formation

Planetary formation What a Nice model Density Early Solar System KOALA Conclusion
1. Asteroid taxonomy
 - Reflectance
 - Albedo
 - 24 classes

2. Strong gradient in 1 AU
 - X : Iron cores
 - V,A : Crust & Mantle
 - S : Melted silicates
 - C : Most primitive
 - D,T : Comet nucleus

3. Paradigm from 1982
 - Survey of 800 asteroids
 - Visible spectrometry
 - In-situ formation

Bus-DeMeo Taxonomy Key

S-complex

C-complex

X-complex

Ordinary chondrites

Carbonaceous chondrites?

Nickel-iron - Stony iron - Entatites

End members

http://smass.mit.edu/busdmeoclass.html
1. Asteroid taxonomy
 - Reflectance
 - Albedo
 - 24 classes

2. Strong gradient in 1 AU
 - X : Iron cores
 - V,A : Crust & Mantle
 - S : Melted silicates
 - C : Most primitive
 - D,T : Comet nucleus?

3. Paradigm from 1982
 - Survey of 800 asteroids
 - Visible spectrometry
 - In-situ formation

Relative fractions of classes

Adapted from Gradie and Tedesco, 1982
The 1982’s view

1. Asteroid taxonomy
 - Reflectance
 - Albedo
 - 24 classes

2. Strong gradient in 1 AU
 - X: Iron cores
 - V,A: Crust & Mantle
 - S: Melted silicates
 - C: Most primitive
 - D,T: Comet nucleus?

3. Paradigm from 1982
 - Survey of 800 asteroids
 - Visible spectrometry
 - In-situ formation

Relative fractions of classes

Adapted from Gradie and Tedesco, 1982
Some open questions

- Late Heavy Bombardment
 - Excess cratering @ 3.8 Gy
 - Thick disk for accretion
 - Tiny fraction remains

- Planetary migration
 - Hot Jupiters
 - Migration within disk
 - Solar System?

5/25 B. Carry, ESA, 2012-10-104
The Grand Tack & Nice model

A. Grand Tack – 100 kyr
- Jupiter inward migration
- Stopped by Saturn
- Inner Solar System

B. The Nice Model – 700 Myr
- Jupiter-Saturn interaction
- Neptune pushed out
- Outer Solar System

Overall result
- Complete mixing
- Removal of 99% mass

Walsh et al. 2011
The Grand Tack & Nice model

A. Grand Tack – 100 kyr
- Jupiter inward migration
- Stopped by Saturn
- Inner Solar System

B. The Nice Model – 700 Myr
- Jupiter-Saturn interaction
- Neptune pushed out
- Outer Solar System

Overall result
- Complete mixing
- Removal of 99% mass

Gomes et al. 2005
But... and the 1982’s view?

Adapted from Gradie and Tedesco, 1982

In-situ formation?
But... and the 1982’s view?

Adapted from Gradie and Tedesco, 1982

In-situ formation?

Number instead of mass – Only largest asteroids
The era of all-sky surveys

1. Number of discoveries sky-rocketed in 30 years
 - 10,000 in 1982 ... 600,000 in 2012
 - Completeness vastly improved (2–5 km)
 ▶ Dynamic models

2. Compositional information available for thousands of asteroids
 - SDSS : visible colours for 100,000 asteroids (vs 800)
 - WISE : albedo for 150,000 asteroids (vs 2000)
 ▶ Large-scale taxonomy

3. Density is needed to convert numbers in mass
 - Limiting factor
 - How do we measure density?
The era of all-sky surveys

1. Number of discoveries sky-rocketed in 30 years
 - 10,000 in 1982 ... 600,000 in 2012
 - Completeness vastly improved (2–5 km)
 ▶ Dynamic models

2. Compositional information available for thousands of asteroids
 - SDSS : visible colours for 100,000 asteroids (vs 800)
 - WISE : albedo for 150,000 asteroids (vs 2000)
 ▶ Large-scale taxonomy

3. Density is needed to convert numbers in mass
 - Limiting factor
 - How do we measure density?
The era of all-sky surveys

1. Number of discoveries sky-rocketed in 30 years
 - 10,000 in 1982 ... 600,000 in 2012
 - Completeness vastly improved (2–5 km)
 - Dynamic models

2. Compositional information available for thousands of asteroids
 - SDSS: visible colours for 100,000 asteroids (vs 800)
 - WISE: albedo for 150,000 asteroids (vs 2000)
 - Large-scale taxonomy

3. Density is needed to convert numbers in mass
 - Limiting factor
 - How do we measure density?
How do we measure density?

\[\rho = \frac{M}{V} \]
How do we measure density?

\[\rho = \frac{M}{V} \]
Mass measurements

1. Flyby
 - Asteroid - Probe
 - **Precise** but rare

2. Satellites
 - Asteroid - Satellite
 - Precise and about common

3. Deflection
 - Asteroid - Asteroid
 - Low precision but common

4. Ephemeris
 - Asteroid - Everything
 - Low precision but common
Mass measurements

1. Flyby
 - Asteroid - Probe
 - **Precise** but **rare**

2. Satellites
 - Asteroid - Satellite
 - **Precise** and about **common**

3. Deflection
 - Asteroid - Asteroid
 - **Low precision** but **common**

4. Ephemeris
 - Asteroid - Everything
 - **Low precision** but **common**
How do we measure density?

\[\rho = \frac{M}{V} \]
Volume measurements

\[\rho = \frac{M}{V} \]

- **Masses**: 287
- **Diameters**:
 - IRAS: 2228
 - AKARI: 10 000
 - WISE: 150 000
 - Gaia: 10 000
Volume measurements

\[\rho = \frac{M}{V} \]

\[\frac{\delta \rho}{\rho} = \sqrt{\left(\frac{\delta M}{M} \right)^2 + \left(\frac{\delta V}{V} \right)^2} = \sqrt{\left(\frac{\delta M}{M} \right)^2 + 9 \left(\frac{\delta R}{R} \right)^2} \]

- Masses: 287
- Diameters:
 - IRAS: 2228
 - AKARI: 10,000
 - WISE: 150,000
 - Gaia: 10,000
Volume measurements

\[\rho = \frac{M}{V} \]

\[\frac{\delta \rho}{\rho} = \sqrt{\left(\frac{\delta M}{M}\right)^2 + \left(\frac{\delta V}{V}\right)^2} = \sqrt{\left(\frac{\delta M}{M}\right)^2 + 9 \left(\frac{\delta R}{R}\right)^2} \]

- Masses: 287
- Diameters:
 - IRAS: 2228
 - AKARI: 10,000
 - WISE: 150,000
 - Gaia: 10,000

The Volume is (easily) the Limiting Factor
Summary of accuracy
Summary of accuracy

The graph shows the cumulative distribution of relative precision for both diameter and mass. The x-axis represents the relative precision (%), while the y-axis represents the cumulative distribution (%). The graph includes data points for 20%, 50%, and 100% relative precision, with values of 94%, 76%, and 60% respectively for mass. The data points are marked with the percentage of accuracy for both diameter and mass.
Summary of accuracy
Current knowledge on density

- Nickel-Iron
- Stony-Iron
- Enstatite chondrites
- Ordinary chondrites
- HED achondrites
- Carbonaceous chondrites

Diameter (km)
- 500 < \(\phi \)
- 200 < \(\phi \) < 500
- 100 < \(\phi \) < 200
- 50 < \(\phi \) < 100
- \(\phi \) < 50

Relative precision (%)
- < 20%
- < 50%
- < 100%

Taxonomy
- TNO
- X-complex
- S-complex
- C-complex
- End-members
- Comets

Mass (kg)
- 10^{14}
- 10^{16}
- 10^{18}
- 10^{20}
- 10^{22}

Density
- 0
- 2
- 4
- 6
- 8
- 10

Carry 2012

15/25 B. Carry, ESA, 2012-10-104
Compositional distribution

Adapted from Gradie and Tedesco, 1982
Compositional distribution revised is radically different!

- Almost complete **mix** everywhere
- **Absence** of mixing in Hilda & Trojan

Evidences for Grand Tack and Nice models
Open questions

Bus-DeMeo Taxonomy Key

- **S-complex**
 - Ordinary chondrites

- **C-complex**
 - Carbonaceous chondrites?

- **X-complex**
 - Nickel-iron - Stony iron - Entatites

End members

- ?
- ?
- ?
- ?
- ?

http://smass.mit.edu/busdemeoclass.html

No interpretation for 50%

- **Meteorite & asteroid spectroscopy**
 - Now based on 0.5–2.5 µm
 - Wider spectral range: 3–5 & 5–40 µm
 - Albedo & thermal inertia

- **More asteroid analogs**
 - Laboratory experiments
 - Recovery campaigns

- **Density determinations**
 - Binary systems (now ~50/200)
 - Accurate volume determination

Albedo biased

18/25 B. Carry, ESA, 2012-10-104
Accurate volume determination

1. Direct measurements
 - **WYSIWYG** ≠ model-dependent
 - Disk-resolved imaging
 - Stellar occultations

2. Realistic 3-D shape
 - Assumptions ⇒ biases
 - Concavity ⇔ Volume
 - Lightcurves (dense & sparse)

3. Geometry completeness
 - Extensive approach
 - Mid-IR radiometry
 - Interferometry
 - Radar echoes
Accurate volume determination

1. Direct measurements
 - **WYSIWYG** ≠ model-dependent
 - Disk-resolved imaging
 - Stellar occultations

2. Realistic 3-D shape
 - Assumptions ⇒ biases
 - Concavity ⇔ Volume
 - Lightcurves (dense & sparse)

3. Geometry completeness
 - Extensive approach
 - Mid-IR radiometry
 - Interferometry
 - Radar echoes
Accurate volume determination

1. **Direct measurements**
 - **WYSIWYG ≠ model-dependent**
 - Disk-resolved imaging
 - Stellar occultations

2. **Realistic 3-D shape**
 - Assumptions ⇒ **biases**
 - Concavity ⇔ Volume
 - Lightcurves (dense & sparse)

3. **Geometry completeness**
 - **Extensive** approach
 - Mid-IR radiometry
 - Interferometry
 - Radar echoes
The concept of KOALA
The concept of KOALA

Disk-resolved images

Direct
Indirect
Size
Shape
Spin
The concept of KOALA
The concept of KOALA

- Lightcurves
- Disk-resolved images
- Sparse Photometry
- Direct Size
- Direct Shape
- Stellar occultations

Planetary formation
What a Nice model
Density
Early Solar System
KOALA
Conclusion
The concept of KOALA

Knitted
- Occultation,
- Adaptive-optics,
- Lightcurve
- Analysis

Stellar occultations

Disk-resolved images

Carry et al., Icarus 2010
Kaasalainen, IPI 2011
Carry et al., P&SS 2012
Accuracy of KOALA

Pre-flyby model

KOALA

Carry et al. 2010

vs. Rosetta

Shape: 2 km RMS

Carry et al. 2012

Accuracy

Diameter $\sim 2\%$

Volume $\leq 15\%$
Accuracy of KOALA
On-going research…

1. Lightcurves & Stellar occultations
 - Interactions with amateur community
 - Now 200 convex shape models available
 - Size determination for 25%

2. Disk-resolved imaging
 - AO camera on VLT, Keck, Gemini
 - KOALA shape modeling
 - Working on ~30 objects

3. Adding data modes in KOALA
 - Mid-infrared (thermal) radiometry
 - Interferometry fringes
 - Radar echoes
 - Getting ready for massive inputs
On-going research...

1. **Lightcurves & Stellar occultations**
 - Interactions with amateur community
 - Now 200 convex shape models available
 - Size determination for 25%

2. **Disk-resolved imaging**
 - AO camera on VLT, Keck, Gemini
 - KOALA shape modeling
 - Working on ~30 objects

3. **Adding data modes in KOALA**
 - Mid-infrared (thermal) radiometry
 - Interferometry fringes
 - Radar echoes
 - Getting ready for massive inputs
... up to 2020

- Spin
 - 10^5 objects
 - Accretion epoch
 - YORP, Yarkovsky (non \tilde{G})

- Shape & Size
 - $10^4 - 10^5$ objects
 - Size-freq. distribution
 - Dynamics & Collisions

- Surface properties
 - $10^4 - 10^5$ objects
 - Albedo, reflectance
 - Link with meteorites

- Density
 - $10^2 - 10^3$ objects
 - Composition
 - Internal structure
Summary

• **Asteroids are remnants from the early Solar System**
 ▶ Distribution of composition → initial conditions
 ▶ Evidences for planetary migration like many exoplanets

• **Asteroid composition remains elusive in many cases**
 ▶ Half of the classification lacks compositional interpretation
 ▶ Still a lot of observational constraints needed

• **Surface and physical properties mostly unknown**
 ▶ Albedo, thermal inertia, density → Composition
 ▶ Period, spin, shape → YORP & Yarkovsky