New insights on thermal properties of asteroids using IR interferometry

PLAN

Introduction

Thermal properties of asteroids

	Physical parameters			
	Physical information			
	Scientific interest			
Interferometry				
	Interferometry	/		
	Interferometry			
	Interferometry Thermophysical mo	odeling		
	Interferometry	odeling		
	Interferometry Thermophysical mo Principle	odeling		
	Interferometry Thermophysical mo Principle	odeling		

Application : Main-belt asteroids (41) Daphne and (16) Psyche

Conclusion and perspectives

Introduction

Introduction

Asteroids and the origin of our solar system

- Asteroids → debris of the planet formation process
- Small → little alteration →conserve pristine material
- Asteroids suffered collisional evolution

 Sizes, shapes, bulk densities, surface properties → collisional evolution

Introduction

Near-Earth asteroids (NEAs)

Location

Origin :

- Some are from the main belt
- Some are dead comets

Size distribution

Figure 1 | Estimate of the cumulative population of near-Earth objects (NEOs) versus size. *H* is the absolute magnitude

Doom :

- Crash into the Sun
- Ejection out of the solar system
- Impact on a planet

Thermal properties of asteroids

Thermal properties of asteroids : physical information

Thermal inertia	Presence (or abs of exposed rocks	Presence (or absence), depth and thickness of regolith, and presence of exposed rocks on the surface of atmosphere–less bodies		
(25143) Itokawa	(433) Eros	The Moon	(21) Lutetia	
Γ = 750	Γ = 150	Γ = 50	Γ = 20	
Release 051101-4 ISAS/JAXA Coarse regolith and boulders	Finer and thicker regolith	Mature and fine regolith	Wery fine regolith	

Thermal properties of asteroids : correlation with size

Thermal properties of asteroids : Scientific interest

Strenght of the Yarkovsky effect

Thermal inertia \rightarrow impact prediction for hazardous asteroids

Thermal properties of asteroids : Scientific interest

Refinement of size measurements

IR radiometry -> 140000 asteroids measured from simple thermal modeling of IR emission (See Mazieros et al. (2011))

Infrared Interferometry

IR interferometry : instrumentation

AMBER 3 telescopes $\lambda \in [1.2 - 2.5]\mu m$ $\theta \sim \frac{B}{\lambda} \in [3 - 25]mas$

MIDI 2 télescopes $\lambda \in [8 - 13]\mu m$ $\theta \sim \frac{B}{\lambda} \in [15 - 100]mas$

Sensitive enough for observation of MBAs (T ~ 250-300 K)

Thermophysical modeling

Thermophysical modeling: principle

At one single epoch, flux + visibility \rightarrow strong constraint on thermal properties

Observing campaign performed in March 2008 with ATs (baseline = 16m) (four mid-IR visibility and flux measurements)

Thermophysical modeling : (41) Daphne

Shape model at the time of VLTI observations

MIDI measurements + best-fit model

Madrid, March 8th 2012

7.0

Matter et al., 2011, 'Determination of physical properties of the asteroid (41) Daphne from interferometric observations in the thermal infrared', lcarus

size estimates (~ 230-260 km)→ densities ≤ 3 g/cm³ (silicate-rich) or densities ≥ 3.5 g/cm³ (metal-rich) (Baer et al., 2008; Drummond & Christou, 2008)

Is M-type (16) Psyche a dense metal-rich asteroid ? Origin: fragment of a differentiated body iron core ?

Thermophysical modeling : (16) Psyche

New observing campaign performed in December 2010 with ATs (baseline = 16m) (five mid-IR visibility and flux measurements)

Thermophysical modeling : (16) Psyche

Е

Shape model at the time of the VLTI observations

Visibilities and fluxes

In progress : refinement of the shape model + use of complementary data

Thermophysical modeling : size vs thermal inertia

Conclusion and perspectives

Thank you for your attention

