New insights on thermal properties of asteroids using IR interferometry

Alexis MATTER

Marco Delbo

Benoit Carry

Sebastiano Ligori

Madrid, March 8th 2012
Thermal properties of asteroids

Physical parameters

Physical information

Scientific interest

Interferometry

Thermophysical modeling

Principle

Application: Main-belt asteroids (41) Daphne and (16) Psyche

Conclusion and perspectives
Introduction
Asteroids and the origin of our solar system

- Asteroids → debris of the planet formation process
- Small → little alteration → conserve pristine material
- Asteroids suffered collisional evolution
- Sizes, shapes, bulk densities, surface properties → collisional evolution
Introduction

Main-belt asteroids

Plot of the positions of the first 5000 asteroids

Size distribution

Bottke et al. (2005)

(1) Ceres

980 km

Madrid, March 8th 2012
Near-Earth asteroids (NEAs)

Location

Size distribution

Introduction

Doom:
- Crash into the Sun
- Ejection out of the solar system
- Impact on a planet

Origin:
- Some are from the main belt
- Some are dead comets
Thermal properties of asteroids
Thermal properties of asteroids: physical parameters

Thermal inertia

Measure of the resistance of a material to a temperature change

\[\Gamma = \sqrt{\rho \kappa c} \]

in SI units: J.m\(^{-2}\).s\(^{-0.5}\).K\(^{-1}\)

Surface roughness

Surface parameter impacting the beaming effect

Modeled by adding hemispherical craters

\[\gamma_c : \text{Opening angle} \]

\[\rho_c : \text{Crater density} \]

Matriz, March 8\(^{th}\) 2012
Thermal properties of asteroids: physical parameters

Effect on thermal emission

Thermal inertia

Surface roughness

Smoothing of the surface temperature distribution

Increase of the apparent temperature when surface is viewed at a small solar phase angle (thermal emission ‘beamed’ in the sunward direction)

Opposition effect in the visible (Eugene Cernan on the moon)

Midnight
Noon (insolation peak)

Credits: Michael Light

The opposition effect brightens the area around Eugene Cernan’s shadow due to retroreflective properties of lunar regolith.

Madrid, March 8th 2012
Thermal properties of asteroids: physical information

Thermal inertia

Presence (or absence), depth and thickness of regolith, and presence of exposed rocks on the surface of atmosphere–less bodies

<table>
<thead>
<tr>
<th>(25143) Itokawa</th>
<th>(433) Eros</th>
<th>The Moon</th>
<th>(21) Lutetia</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma = 750$</td>
<td>$\Gamma = 150$</td>
<td>$\Gamma = 50$</td>
<td>$\Gamma = 20$</td>
</tr>
<tr>
<td>Coarse regolith and boulders</td>
<td>Finer and thicker regolith</td>
<td>Mature and fine regolith</td>
<td>Very fine regolith</td>
</tr>
</tbody>
</table>

Madrid, March 8th 2012
Thermal properties of asteroids: correlation with size

Inverse correlation size-thermal inertia

$$\Gamma \propto D^{-\xi}$$

- $$\xi_{small}$$
- $$\xi_{big}$$

NEAs and MBAs with $$D \leq 80-100 \text{ km}$$

MBAs with $$D \geq 80-100 \text{ km}$$
Thermal properties of asteroids: Scientific interest

Strenght of the Yarkovsky effect

Binzel et al. (2003)

\[
\frac{da}{dt} \propto D^{-1}
\]

Semi-major axis drift rate

Bottke et al. (2002)

\[
\Gamma = cte
\]

with D

\[
\frac{da}{dt} \propto D^{-1}
\]

Semi-major axis drift rate

Delbo&Tanga (2009)

\[
\Gamma \propto D^{-\xi}
\]

Size distribution of asteroids injected into the Near-Earth space is modified

Thermal inertia → impact prediction for hazardous asteroids

Madrid, March 8th 2012
Thermal properties of asteroids: Scientific interest

Refinement of size measurements

IR radiometry -> 140000 asteroids measured from simple thermal modeling of IR emission (See Mazieros et al. (2011))

IR flux

Thermal model
(spherical shape, zero thermal inertia)

Albedo size

If non-negligible thermal inertia

STM
Standard Thermal Model (Lebovski et al., 1986)

Diameter underestimation

Albedo overestimation

Spencer et al. (1989)

Madrid, March 8th 2012
Infrared Interferometry
IR interferometry: principle

Telescope plan

Beam collection

Combining plan (focal lab)

Detector

Dispersive element

Beam combination

Formation of interference fringes

\[I(x, \lambda) = I_0[1 + \cos(a \frac{x}{\lambda})] \]
IR interferometry: principle

Telescope plan

Beam collection

Combining plan (focal lab)

Dispersive element

Detector

Formation of interference fringes

\[I(x, \lambda) = I_0 [1 + C \left(\frac{B}{\lambda} \right) \cos \left(a \frac{x}{\lambda} + \varphi \left(\frac{B}{\lambda} \right) \right)] \]

Fringes contrast (visibility) \(\rightarrow V(\lambda) \)

Fringes phase \(\rightarrow \varphi(\lambda) \)

Baseline B
IR interferometry: instrumentation

AMBER
3 telescopes
\[\lambda \in [1.2 - 2.5] \mu m \]
\[\theta \sim \frac{B}{\lambda} \in [3 - 25] \text{mas} \]

MIDI
2 télescopes
\[\lambda \in [8 - 13] \mu m \]
\[\theta \sim \frac{B}{\lambda} \in [15 - 100] \text{mas} \]

Sensitive enough for observation of MBAs (T \sim 250-300 K)

Madrid, March 8th 2012
Thermophysical modeling
Thermophysical modeling: principle

Shape model
- distances
- rotation axis
- shape and size
Thermophysical modeling: principle

Solar flux absorption

Heat conduction

Thermal re-emission

Temperature calculation

\[\phi_N = -\kappa \nabla T \]

\[F_{\text{incident}} \]

\[F_{\text{emitted}} \]

\[T_{\text{fac}} \]
Thermophysical modeling: principle

Creation of 2D mid-IR image (each \(\lambda \) and each epoch)

- Mid-IR flux \(\overline{I}(\lambda) \)
- Visibility \(\overline{V}(\lambda) \)
- Baseline B
Thermophysical modeling: principle

\[\chi^2 = \frac{1}{N_e N_l} \sum_i \sum_j \chi_{i,j}^2 \]

\(\chi^2 \) calculation

- **Observations**: \(V(\lambda) \) et \(I(\lambda) \)
- **Model**: \(\overline{V}(\lambda) \) et \(\overline{I}(\lambda) \)
- **\(\chi_{i,j}^2 \)**

\[\chi_{i,j}^2 = \left[\frac{I_i(\lambda_j) - \overline{I}_i(\lambda_j)}{\sigma_{I_{i,j}}} \right]^2 + \left[\frac{V_i(\lambda_j) - \overline{V}_i(\lambda_j)}{\sigma_{V_{i,j}}} \right]^2 \]

Best-fit value for roughness model, thermal inertia, albedo, size

Madrid, March 8th 2012
Thermophysical modeling: interest of interferometry

\[I(\lambda) \propto D_{\text{proj}}^2 \]

\[V(\lambda) = f(D_{\text{ang}}) \]

At one single epoch, flux + visibility \(\rightarrow \) strong constraint on thermal properties
Observing campaign performed in March 2008 with ATs (baseline = 16m) (four mid-IR visibility and flux measurements)

Big main-belt asteroid (D ~ 220 km)

Spectral properties (albedo) \rightarrow **C-type asteroid** \leftrightarrow primitive carbonaceous chondrite meteorites

Thermophysical modeling: (41) Daphne

Non-convex model (Carry, 2009)

Lightcurves observations and disk-resolved observations

Shape model
Shape model at the time of VLTI observations

MIDI measurements + best-fit model
Mid-IR Visibility + Flux → TPM

Moderate roughness

\[45^\circ \leq \gamma_c \leq 68^\circ \]
\[0.5 \leq \rho_c \leq 0.8 \]

(Moon and (1) Ceres → high roughness)

\[\Gamma < 30 \text{J.m}^{-2}.\text{s}^{-1}.\text{K} \rightarrow \text{very fine regolith} \]

(Moon \approx 50 \text{J.m}^{-2}.\text{s}^{-1}.\text{K} and (1) Cérès \approx 15 \text{J.m}^{-2}.\text{s}^{-1}.\text{K})
Thermophysical modeling: (41) Daphne

Mid-IR Visibility + Flux → TPM

Mid-IR Flux → TPM

Strong constraints brought by IR interferometry

Matter et al., 2011, ‘Determination of physical properties of the asteroid (41) Daphne from interferometric observations in the thermal infrared’, Icarus
Thermophysical modeling: (16) Psyche

(16) Psyche

Main-belt asteroid

Visible and near-IR spectral properties (albedo) → **M-type asteroid** ↔ Ni-Fe or stony-iron meteorites (Hadersen et al., 1995; Ockert-Bell et al., 2010)

Very high radar albedo → strong evidence for a metal-rich surface regolith (Shepard et al., 2010)

size estimates (~ 230-260 km) → densities ≤ 3 g/cm³ (silicate-rich) or densities ≥ 3.5 g/cm³ (metal-rich) (Baer et al., 2008; Drummond & Christou, 2008)

Is M-type (16) Psyche a dense metal-rich asteroid?
Origin: fragment of a differentiated body iron core?
New observing campaign performed in December 2010 with ATs (baseline = 16m) (five mid-IR visibility and flux measurements)
Thermophysical modeling: (16) Psyche

Shape model at the time of the VLTI observations

Visibilities and fluxes

Madrid, March 8th 2012
Thermophysical modeling: (16) Psyche

Mid-IR Visibility + Flux → TPM

\[\gamma_c = 45^\circ \]
\[\rho_c = 0.5 \]

Low roughness

Thermal inertia > 100 J.m\(^2\).s\(^{-1}\).K

Volume equivalent diameter → ~ 235 km
First conclusions

Smaller diameter (~ 235 km) → density ≥ 3.5 g/cm³

Dense structure

High thermal inertia values (> 100 J.m⁻².s⁻¹.K) → little porosity of the surface

High surface thermal conductivity

Metal-rich regolith and internal structure

In progress: refinement of the shape model + use of complementary data
Conclusion and perspectives
Summary

• First application of IR interferometry to the study of thermal properties of asteroids
 → (41) Daphne: First constraints on thermal inertia and surface roughness (Matter et al., 2011)
 → (16) Psyche: Preliminary results on size and thermal inertia → metallic composition

In progress

Perspectives

New VLTI instrument PRIMA

Larger panel of asteroids observable with MIDI
(expected gain of about 3 magnitudes in V)

Thermal properties Internal structure
Thank you for your attention