
1

Self-calibration in astronomy
A general principle as applied to Gaia

  
Lennart Lindegren

Lund Observatory
Lund University, Sweden

ESAC Seminar, 12 September 2012 



2

Outline

• Classical calibration versus self-calibration: 
An example from computer vision

• Some examples from astronomy
Meridian circle observations
Plate overlap technique
Hubble Space Telescope
Radio interferometry
Gaia

• Summarizing the concept
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Computer vision: Camera calibration

• For a pinhole camera, the transformation (X, Y, Z) → (u, v) is described 
by a rotation and translation (six extrinsic camera parameters)

• The intrinsic camera calibration (u, v) → (p, q) needs, in the most 
general linear model, six additional parameters: 
                      p = p0 + p1u + p2v,       q = q0 + q1u + q2v 

u

vc

cameraX

Z

world
coordinates

pixel coord. 
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Computer vision: Classical calibration method

u

vc

standard pattern (3D)
with known (X, Y, Z)

camera

Measuring a sufficient number of correspondences
(X, Y, Z) → (p, q) 

allows to determine the camera parameters

pixel coord. 
(p, q)



5

Computer vision: Self-calibration

• Self-calibration method using a moving camera

Maybank & Faugeras 
(1992) showed that with
≥ 7 point correspondences
and ≥ 3 camera positions,
the extrinsic and intrinsic
camera parameters can
be recovered up to a scale 
factor.

Assumptions:
 intrinsic params constant
 object constant in (X,Y,Z)
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Camera self-calibration: 
The matematician’s approach

• Camera parameters are recovered semi-analytically, e.g. using the 
invariance of conic sections under the pinhole projection

Figure from 
Luong & Faugeras (1997)
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Camera self-calibration: 
The simple astronomer’s approach
• Unknowns:

- (Xi, Yi, Zi), i = 1, ..., n for the n points in the (fixed) object
- (xj, yj, zj, φj, θj, ψj), j = 1, ..., m for the m camera positions/orientations
- (p0, p1, p2, q0, q1, q2) for the (fixed) intrinsic camera parameters
- in total 3n + 6m + 6 unknown parameters x

• Observations: 
- (pobs, qobs)ij pixel coordinate pairs for the nm point/camera combinations
- in total 2nm measurements (or a subset of them)

• Theoretical model:  pobs ≈ p(x),  qobs ≈ q(x)
• Set up linearized observation equations and solve by least-squares:

pobs - p(x) = ∂p(x)/∂x . Δx
qobs - q(x) = ∂q(x)/∂x . Δx  

⎫
⎬  ⇒   Δx   ⇒   x := x + Δx,   etc 
⎭

Resulting system of linear equations
should be singular due to the undefined
spatial origin, axis orientation, and scale!
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Singular, well-posed and ill-posed problems

Singular problems are not necessarily bad (if you understand why)
Singular values for a well-posed and ill-posed problem: 

Seven d.o.f. for the undefined
origin, orientation, and scale
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Some features of the camera self-calibration

• The test object need not be known, but it must be constant
- Could extend e.g. to case where each point has a uniform motion: 

Xi(t) = Xi(0) + Xi(1)t  (twice as many object parameters to solve)

• The extrinsic camera parameters (translation, rotation) need not be 
known, and must vary

• The intrinsic camera parameters (scale, distortion) must be constant
- Much more general models than the pinhole projection + linear transformation are 

possible, e.g. optical distortion + small-scale irregularities. Cf. human vision!

• Some properties remain undetermined (e.g., a common scale factor)
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Pierre Lacroute
(1906-1993),
“Father of space 
astrometry”, director 
of l’Observatoire de 
Strasbourg 1946-76

(1964)
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Calibration parameters for a meridian circle

The meridian circle at
Strasbourg observatory, ca 1895

East-West axis

b

a

90° + c
a = azimuth error
b = level error
c = collimation error

Tobias Mayer’s formula (1756):

Δt cos δ =
= a sin(φ − δ) + b cos(φ − δ) + c

a, b, c are improved
by using constraints
set by the same star
being observed on 
consecutive nights
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Classical small-field astrometry

• Transformation
F:  (x, y) ↔ (α, δ)
established by means
of reference stars
(with ”known” α, δ)

• (α, δ) for other stars obtained by applying transformation
to measured coordinates:  (α, δ) = F(x, y)

• Problems:
‒ low density of reference stars (e.g. Hipparcos, Tycho-2)
‒ measurements often more precise that reference stars
‒ essentially an interpolation method: errors increasing towards

the edges (extrapolation); systematic catalogue errors cannot 
be removed

x

y

reference stars

photographic plate 
(or CCD frame)



Plate overlap method 
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Plate overlap method

• Every (non-reference) star that appears on two plates (i, j)
provides a constraint:  Fi(xi, yi) = Fj(xj, yj)   [= (α, δ)]

reference star

Lots of non-ref stars ⇒
many more constraints
than calibration param.
⇒ much better accuracy

Can we do 
without reference 
stars altogether?
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Astrometry with HST: WFPC2, ACS and FGS

• HST focal plane layout before SM4
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HST calibrations: WFPC2 example

• Anderson & King (2003) PASP 115, 113 (using ω Cen)

Pattern of exposures Map of 89,000 stars used
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HST calibrations: Fine Guidance Sensors (FGS)
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HST calibrations: Fine Guidance Sensors (FGS)

McArthur, Benedict & Jefferys, 2002 HST Calibration Workshop, p. 373

Rotation and offset of FGS 1R in one calibration set (using M35 cluster)
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Self-calibration in radio interferometry

• An interferometer measures coherence in the electric field between 
pairs of antennae (baseline)

correlator

B

cτ = B cos θ

 θ

τ    ⇒   θ = arccos(cτ/B)

phase error ϕi phase error ϕj 

phase errors

⇓

Δθ ∝ ϕi − ϕj
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Self-calibration in radio interferometry

• With N = 3 antennas the instantaneous phase errors when 
observing the same point source must satisfy the constraint

(ϕ1 ‒ ϕ2) + (ϕ2 ‒ ϕ3) + (ϕ3 ‒ ϕ1) = 0    (closure phase)

N Nconstr

2 0

3 1

4 3

5 6

6 10

7 15

: :

27 325

Closure-phase allows 
to determine ϕj(t) up to 
a constant offset
(works best for large N)
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Gaia

• Launch 2013

• Measures the astrometric
parameters (positions, 
parallaxes, proper motions) 
for 109 stars

• Accuracy ~ 10-10 rad (20 µas)

• Gaia is a self-calibrating 
instrument (it must be!)
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How Gaia works
projection onto the sky of 
one of the CCDs through
the preceding FoV

projection onto 
the sky of the 
same CCD through 
the following FoV

x

y

z

x y z  = 
Scanning
Reference
System (SRS)

CCD

fiducial 
observation line

The geometric instrument
calibration specifies the
fiducial line in the SRS

The attitude is 
the orientation 
of the SRS in the 
celestial frame
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How Gaia works

• Elementary observation: 
a star crosses the fiducial line of a CCD at a certain time t

• t depends on:

a. the position of the star on the sky

b. the instantaneous pointing of Gaia  

c.  the mapping from spherical coordinates 
 in the SRS frame to CCD pixels

• b) and c) are the "calibration" of Gaia - they are needed to transform an 
observation to a celestial direction

(nuisance parameters)

(wanted parameters)
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Gaia as a self-calibrating instrument

• Pre-launch laboratory calibration is not feasible to required accuracy

• No special "calibration observations" are made - just regular observations

• Gaia does not rely on any previous astrometric measurements for its 
calibration  

• Many (>10%) of the observations contribute to the calibration (AGIS)

• Instrument stability on short time scales (< 6 hr) is essential (cf. BAM)

• The resulting system of positions and proper motions has six d.o.f. 
corresponding to the orientation and spin of the reference frame - these 
have to be fixed from external data (VLBI positions of quasars, assumed 
zero proper motion of quasars)
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Why is self-calibration possible for Gaia?

• We use models of the stars, attitude and geometric calibration:
‒ the stars move uniformly through space
‒ the attitude is continuous and smooth
‒ the optics and CCD layout are very stable 

on short time scales (< 6 hr)

• Here we are helped by Nature (most stars are benign) 
and the clever design of Gaia

• The models impose a very large number of constraints 
on the possible solutions (Nconstr ≈ Nobs)
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Self-calibration: Some common features

• Self-calibration works by introducing constraints

• A large fraction of the observations produce constraints

• Something is assumed to be constant

• Self-calibration is usually only for a subset of the parameters
⇒	 intrinsic calibration parameters

• Thus external calibration is still needed for some parameters (scale, 
orientation, arbitrary origin, ...)  ⇒	 extrinsic cal. parameters

• Ideally, there should be a sharp boundary between intrinsic and extrinsic 
parameters (complete self-calibration = well-posed problem) - next slide

• The constraints interconnect large datasets - hence self-calibration tend 
to be computationally intensive
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Complete and partial self-calibration

External data are usually needed e.g. to fix scale, orientation, ...

• Complete self-calibration:  external data are only used to fix thos 
parameters that cannot be determined by self-calibration

• Partial self-calibration:  external data influence also other parameters 
(example: plate overlap method using reference stars)
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Conclusions

• Self-calibration has been around for some time and is used in many 
different contexts (under various names)

• Compared with classical techniques it can give a vastly improved 
calibration

• Understanding the concept may help to apply it more systematically, to 
new projects, and perhaps in a better way (e.g. complete versus partial 
self-calibration)

• It is probably a very useful concept, but we still don’t have a clear 
definition of it and we have only started to explore its full potential ...
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Thank you!


