A Multiwavelength View of the Microquasar Cygnus X-1: variability and state transitions on timescales from hours to years

Victoria Grinberg

Dr. Karl Remeis-Sternwarte, Bamberg & Erlangen Centre for Astroparticle Physics (ECAP)

13 December 2012
Talk Outline

1. Black Hole Binaries
2. Spectral Variability: A Multiwavelength View
3. Spectral Variability: A Long-Term View
4. Spectral Variability: Cygnus X-1
 - RXTE monitoring
 - A Fast State Transition
 - State Definitions with All Sky Monitors
5. Summary & Outlook
Galactic X-ray binaries:
Material flows from normal star onto neutron star or black hole

- accretion and ejection processes
- bulk of radiation in X-ray range
The geometry of the accretion flow is assumed to be very similar in AGN and black hole binaries (BHBs).

⇒ similar behaviour, scaled with mass

- **Size:** \(r \propto \frac{GM}{c^2} \propto M \)
 - BHBs: some 10 km
 - AGN: some AU

- **Variability:** \(\Delta t \propto M \)
 - BHBs: a few msec
 - AGN: up to tens of ksec

- **Temperature:** \(kT_{\text{in}} \propto M^{-1/4} \)
 - BHBs: disc observed in soft X-rays
 - AGN: disc observed in UV

Credit: ESO/WFI (visible); MPIfR/ESO/APEX/A. Weiss et al. (microwave); NASA/CXC/CfA/R. Kraft et al. (X-ray);
Cyg X-1 / HDE 226868 System

HMXB
(High Mass X-ray Binary)

companion:
HDE 226868, O-type supergiant, close to filling its Roche lobe

- strong stellar winds \Rightarrow accretion via focused wind
- orbital period ~ 5.6 days; distance $\sim 1.86^{+0.12}_{-0.11}$ kpc (VLBA parallax, Reid et al., 2011)
- inclination of the system $i = 27^\circ$ (Orosz et al., 2011)
two distinct regimes:

1. **hard state**
 - lower flux at soft X-rays,
 - higher flux at hard X-rays

2. **soft state**
 - higher flux at soft X-rays,
 - lower flux at hard X-rays

Cygnus X-1; *Nowak et al., 2011b, Fig. 1*

Chandra • **Suzaku-XIS** • **Suzaku-GSO** • **RXTE-PCA** • **RXTE-HEXTE** • **INTEGRAL**
X-ray-radio Correlation

1.5–12 keV [cps]

15 GHz [mJy]

RXTE ASM

AMI (former: Ryle)

Victoria Grinberg 13 December 2012 8
Jets: Radio

Stirling et al., 2001, Fig. 3

Gallo et al., 2005, Fig. 1&2
coordinated mid-IR (*Spitzer*), X-ray (*RXTE*) and radio (*AMI*) observations

hard state

jets present in 2 out of 3 observations

detection of jet-break at about at about 2.9×10^{13} Hz

Rahoui, ..., VG, 2011
γ-Rays: Hard Tail

P. Laurent, ..., VG, 2011, Science 332, 438

INTEGRAL monitoring of Cyg X-1: \(\approx 5 \text{Ms} \) of *INTEGRAL*/IBIS data between 2003 and 2009

two spectral components:

- \(\lesssim 400 \text{ keV} \): curved component \(\Rightarrow \) Comptonization/reflection
- \(\gtrsim 400 \text{ keV} \): nonthermal component, hard tail

Compton mode for 400–2000 keV data:
polarization fraction $67 \pm 30\%$ (90% conf.), polarization angle $40 \pm 15^\circ$
\Rightarrow cue towards synchrotron, i.e. jet, origin of the hard tail component
Possible X-ray Emission Geometry

The possible X-ray emitting regions are:

- accretion disc
- corona (two of many discussed geometries shown)
- jet

Nowak et al., 2011a, Fig. 9
Cyg X-1 hard state Suzaku/RXTE spectra; Nowak et al., 2011b, Fig. 4a

Victoria Grinberg
13 December 2012
Cyg X-1: Variability and State transitions

Spectral Variability: A Multiwavelength View

Non-thermal Comptonization:

Cyg X-1 hard state Suzaku/RXTE spectra; Nowak et al., 2011b, Fig. 4b

Victoria Grinberg
13 December 2012
jet model (radio data at 15 MHz not shown, but used in fit):

Cyg X-1 hard state Suzaku/RXTE spectra; Nowak et al., 2011b, Fig. 12
jet model, e.g. Markoff et al., 2005; Maitra et al., 2011

Cyg X-1 hard state Ryle/Suzaku/RXTE spectra, courtesy of M. Nowak; Nowak et al.,
ASM Lightcurve

Cyg X-1: Variability and State transitions Spectral Variability: A Long-Term View

Victoria Grinberg 13 December 2012 16
An Empirical Measure for the Spectral State

X-ray hardness \cong

X-ray colour:

$$\text{Hardness} = \frac{\text{hard countrate}}{\text{soft countrate}}$$

Hardness intensity diagramm (HID)

$=$

hardness vs. total countrate
same kind of behaviour for different accreting objects

⇒

one unified scheme for state transitions: **q-Track**
in BHBs:

- soft X-rays: disc component
- hard X-rays: power law component

⇒ hardness is a ratio between disc and power law component
⇒ construct HID analogue for AGN: disc fraction luminosity diagram

Koerding et al., 2006, Fig. 7
A Transient Radio Jet in an Erupting Dwarf Nova

Elmar Körding,1* Michael Rupen,2 Christian Knigge,1 Rob Fender,1 Vivek ... Timing Explorer.

6 JUNE 2008 VOL 320 SCIENCE www.sciencemag.org

suggesting that the disc/jet coupling mechanism is ubiquitous.

that is best explained as synchrotron emission originating in a transient jet. Both the inferred jet

radio observations of a dwarf nova in outburst showing variable flat-spectrum radio emission

disc/jet coupling has evolved and been extended to many accreting objects. The only major

Matthew Templeton,3 Tom Muxlow4

Victoria Grinberg 13 December 2012 20

Bay State Road, Cambridge, MA 02138, USA.4University of

Southampton SO17 1BJ, UK.2National Radio Astronomy Ob-
neries (WDs with thermonuclear burning)

soft sources (WDs with thermonuclear burning)

white dwarfs (WDs) has been reported for super-

trinsically coupled. Jet emission from accreting

emission originating from a jet (the hard state,

core radio emission is quenched in the soft

hard x-ray spectrum and usually shows radio

beginning of the outburst, the source shows a

truncated disc) are thought to be similar (RHMs)

Koerding et al., 2008, Fig. 1

Fig. 1. HID for a black hole, a neutron star, and the DN SS Cyg. The arrows indicate the temporal

states of ~10 when the source is in the analog state of

disc-fraction luminosity diagram (Koerding et al., 2008, Fig. 1 ,

neutron star XRBs, which does not exist in the

be due to the existence of a boundary layer in

XRBs: On its right side, one generally observes a compact jet; the crossing of this line usually coincides

making a transition to the soft state character-

once the source crosses the jet line; after this,

typically accompanied by a bright radio flare

emission from dwarf novae (DNe), a class of

X-ray binaries (XRBs), which do show

ranges from weeks to months (Koerding et al., 2008).

A Transient Radio Jet in an Erupting Dwarf Nova

Elmar Körding,1* Michael Rupen,2 Christian Knigge,1 Rob Fender,1 Vivek ... Timing Explorer.

6 JUNE 2008 VOL 320 SCIENCE www.sciencemag.org

suggesting that the disc/jet coupling mechanism is ubiquitous.

that is best explained as synchrotron emission originating in a transient jet. Both the inferred jet

radio observations of a dwarf nova in outburst showing variable flat-spectrum radio emission

disc/jet coupling has evolved and been extended to many accreting objects. The only major

Matthew Templeton,3 Tom Muxlow4

Victoria Grinberg 13 December 2012 20

Bay State Road, Cambridge, MA 02138, USA.4University of

Southampton SO17 1BJ, UK.2National Radio Astronomy Ob-
neries (WDs with thermonuclear burning)

soft sources (WDs with thermonuclear burning)

white dwarfs (WDs) has been reported for super-

trinsically coupled. Jet emission from accreting

emission originating from a jet (the hard state,

core radio emission is quenched in the soft

hard x-ray spectrum and usually shows radio

beginning of the outburst, the source shows a

truncated disc) are thought to be similar (RHMs)

Koerding et al., 2008, Fig. 1

Fig. 1. HID for a black hole, a neutron star, and the DN SS Cyg. The arrows indicate the temporal

states of ~10 when the source is in the analog state of

disc-fraction luminosity diagram (Koerding et al., 2008, Fig. 1 ,

neutron star XRBs, which does not exist in the

be due to the existence of a boundary layer in

XRBs: On its right side, one generally observes a compact jet; the crossing of this line usually coincides

making a transition to the soft state character-

once the source crosses the jet line; after this,

typically accompanied by a bright radio flare

emission from dwarf novae (DNe), a class of

X-ray binaries (XRBs), which do show

ranges from weeks to months (Koerding et al., 2008).
Cyg X-1: Variability and State transitions

Spectral Variability: Cygnus X-1

Cyg X-1 on the q-Track

ASM hardness A/C (5-12keV / 1.5-3keV)
ASM total countrate [cps]

Victoria Grinberg
13 December 2012
The RXTE Campaign

Grinberg et al., 2013, in prep.
Cyg X-1: Variability and State transitions

Spectral Variability: Cygnus X-1

Spectral Modelling

two basic spectral models employed to describe the *RXTE* data:

- broken power law
- modified by a high energy cutoff

Grinberg et al., 2013, in prep.

- simple Comptonization model
 - (Titarchuk, 1994)
- modified by reflection

both models modified by an *Iron Kα-line* at \(\sim 6.4 \text{ keV} \) and by absorption

Grinberg et al., 2013, in prep.
Cyg X-1: Variability and State transitions

Spectral Variability: Cygnus X-1

Hard and Soft Spectra

hard state: no disk required

\[\Gamma_1 \approx 1.7 \]

soft state: strong disk component

\[\Gamma_1 \approx 3.1 \]

Grinberg et al., 2013, in prep.
Presence of Disk Component

red: broken power law **without** disk

black: broken power law **with** disk

Grinberg et al., 2013, in prep.
Orbital Coverage

Grinberg et al., 2013, in prep.
Orbital Modulation of \(N_H \)

inclination of the system:
\(i = 27^\circ \) (Orosz et al., 2011)

here: hard observations, with no disk required

\(\Rightarrow \) at \(\phi \approx 0 \) stronger absorption due to material local to the system, i.e. the stellar wind of the companion

Grinberg et al., 2013, in prep.
State Transitions

- hard to soft state transition observed to occur in **under 2.5 hours**
- similar behaviour on short and long timescales

Böck, VG, et al., 2011
State Transitions

- hard to soft state transition observed to occur in **under 2.5 hours**
- similar behaviour on short and long timescales
- radio flux and X-ray spectral shape correlated
- **tight correlations** between spectral and timing parameters

Böck, VG, et al., 2011

![Graph showing photon index vs. radio flux, with annotations for all RXTE data and this work.](image)
Cyg X-1 spectrum with INTEGRAL

exposure \sim 1 day

exposure \sim 1.4 days

$\nu F_{\nu} \, [\text{ergs cm}^{-2} \text{s}^{-1}]$

Energy [keV]

Victoria Grinberg
idea: define states using ASM data ⇒ state definitions where no PCA data available
idea: define states using ASM data ⇒ state definitions where no PCA data available

simple solutions (using either only countrate or only the hardness)
idea: define states using ASM data ⇒ state definitions where no PCA data available

simple solutions (using either only countrate or only the hardness) do not clearly distinguish between states

Grinberg et al., 2012, to be submitted
idea: define states using ASM data ⇒ state definitions where no PCA data available

simple solutions (using either only countrate or only the hardness) do not clearly distinguish between states

solution: use a function of both countrate and hardness
ASM Mapping

Grinberg et al., 2012, to be submitted
ASM, MAXI, BAT and GBM Mapping

Grinberg et al., 2012, to be submitted
Summary

- Unique dataset covering different states and numerous state transitions
- Flux and hardness both important for state definitions in ASM
- Quick transitions, tight parameter correlations
- Orbital variations of N_H

Outlook

- full timing analysis of bi-weekly campaign data
- analysis of simultaneous RXTE and INTEGRAL observations for better broad band coverage and test of different physical models
- ASM (and BAT, MAXI, GBM) defined states for state-resolved polarisation analysis with INTEGRAL/IBIS