Holographic Imaging: Sharp Images for Everybody

accepted for publication, arXiv:1110.2261

Motivation: no pain, no gain...

The horror...

DIMM seeing ~2" \Rightarrow predicted FWHM at 8.6 μ m ~1"

Motivation: no pain, no gain...

Motivation: no pain, no gain...

רייז

R.A.

Dec. [''] 0

I. Basic concepts

The perfect image from the ground... an old dream of astronomers.

The diffraction limit and atmospheric turbulence

 $\frac{Coherence time:}{\tau_0 = r_0/v_{wind}} \approx 60 \text{ ms} (2.2 \mu \text{m})$

The diffraction limit and atmospheric turbulence

Fried barameter:

 $\tau_0 = r_0 / v_{wind} \approx 60 \text{ ms} (2.2 \mu \text{m})$

The diffraction limit and atmospheric turbulence

Fried barameter:

ADAPTIVE OPTICS

But: It's (very) expensive and (very) complex.

Is there a smarter, leaner way, attractive for small telescopes?

Corrected

Uncorrected

- 1) take short exposures with $t_{exp} \sim T_0$
- 2) reconstruct images off-line

Simple Shift-and-Add (SSA) algorithm:

 choose a reference star and reference pixel
 shift each image in stack so that brightest speckle of reference star comes to rest on reference pixel
 average stack
 (see, e.g., Christou, 1991; Eckart & Genzel 1996; Ghez et al., 1998)

Selection of best frames ⇒ Strehl ratios 10%-30% in K-band

I) take short exposures with $t_{exp} \sim T_0$ 2) reconstruct images off-line

Simple Shift-and-Add (SSA) algorithm:

 choose a reference star and reference pixel
 shift each image in stack so that brightest speckle of reference star comes to rest on reference pixel
 average stack
 (see, e.g., Christou, 1991; Eckart & Genzel 1996; Ghez et al., 1998)

Selection of best frames ⇒ Strehl ratios 10%-30% in K-band

I) take short exposures with $t_{exp} \sim T_0$ 2) reconstruct images off-line

Simple Shift-and-Add (SSA) algorithm:

 choose a reference star and reference pixel
 shift each image in stack so that brightest speckle of reference star comes to rest on reference pixel
 average stack
 (see, e.g., Christou, 1991; Eckart & Genzel 1996; Ghez et al., 1998)

Selection of best frames ⇒ Strehl ratios 10%-30% in K-band

1) take short exposures with $t_{exp} \sim T_0$ 2) reconstruct images off-line

Simple Shift-and-Add (SSA) algorithm:

 choose a reference star and reference pixel
 shift each image in stack so that brightest speckle of reference star comes to rest on reference pixel
 average stack
 (see, e.g., Christou, 1991; Eckart & Genzel 1996; Ghez et

Selection of best frames ⇒ Strehl ratios 10%-30% in K-band

al., 1998)

SSA reconstruction

I) take short exposures with $t_{exp} \sim T_0$ 2) reconstruct images off-line

 Simp
 Only moderate Strehl can be achieved with SSA

 2. shift or referend
 and sensitivity is relatively low.

 3. averal
 averal

(see, e.g al., 1998 Lucky imaging is good for Strehl, but bad for sensitivity and efficiency.

Selection of pest frames

 \Rightarrow Strehl ratios 10%-30% in K-band

Speckle holography

$$O(u, v) = \frac{I_m(u, v)}{P_m(u, v)}$$
$$= \frac{I_m(u, v)P_m^*(u, v)}{|P_m(u, v)|^2}$$
many frames

$$O_e(u, v) = \frac{\langle I_m P_m^* \rangle}{\langle |P_m|^2 \rangle}.$$

see, e.g., Primot, Rousset & Fontanella (1990); Petr et al. (1998)

Speckle holography

 $O(u, v) = \frac{I_m(u, v)}{P_m(u, v)}$ $=\frac{I_{m}(u, v)P_{m}^{*}(u, v)}{|P_{m}(u, v)|^{2}}$ many frames $O_e(u, v) = \frac{\langle I_m P_m^* \rangle}{\langle |P|^2 \rangle}.$

see, e.g., Primot, Rousset & Fontanella (1990); Petr et al. (1998)

figure from Petr et al. (1998)

Speckle holography

see, e.g., Primot, Rousset & Fontanella (1990); Petr et al. (1998)

figure from Petr et al. (1998)

II.Methodology

Data

GC NACO/VLT, Ks windowing 512x514 cube mode (Girard et al., 2010) DIT = 0.15s DIMM~0.5" 12500 frames standard reduction

Algorithm (I) SSA image (2)PSF fitting (e.g., StarFinder) ⇒stellar fluxes and positions

Algorithm

(3) Select reference stars

For each frame do...

(4) Preliminary PSF estimate

(5) improved PSFestimate (subtraction of secondary stars)

(6) $O = \langle I_m \times P_m^* \rangle / \langle |P_m|^2 \rangle$

(7) Apodization and inverse Fourier transform

Algorithm

(8) optional: repeat

Quality Control: AO vs. Holography

NaCo, AO, 31 March 2009 DIMM \approx 0.5", $\tau_0 \approx$ 47 ms $t_{int} = 1320 \times 0.5s = 1320s$

NaCo, holography, 7 Aug 2011 DIMM \approx 0.5", $\tau_0 \approx$ 2 ms $t_{int} = 12,500 \times 0.15 \text{s} = 1875 \text{s}$

Holography vs. AO

Holography vs. AO

III.Holography: under extreme conditions

Faint reference stars

Faint reference stars

Faint reference stars

Short wavelengths: I-band

Core of MI5 FASTCAM@NOT I-band, seeing ~I"

Simple shift-and-add with frame selection (1%): *lucky imaging* ~4% Strehl, ∆m≈5

Short wavelengths: I-band

Core of MI5 FASTCAM@NOT I-band, seeing ~I"

Holography with frame selection (50%), separate reconstruction of subfields to deal with anisoplanatic effects: ~18% Strehl, $\Delta m \approx 8.0$

Short wavelengths: I-band

Holography + AO

Holography + AO

Sensitivity of holography at the diffraction limit with current NIR detectors/electronics: Ks \approx 19 at 50.

Under-sampling: less resolution, but higher sensitivity and larger field-of-view

Sensitivity of holography at the diffraction limit with current NIR detectors/electronics: Ks \approx 19 at 50.

Under-sampling: less resolution, but higher sensitivity and larger field-of-view

For example, HAWKI@VLT:

- 0.106"/pixel (0.027"/pixel to sample diffraction limit at VLT)
- Sensitivity Ks $\approx\!20$ at 5σ with t_{exp} =0.2s and t_{int} = 28s
- FOV: 217"×54"
- Reference stars as faint as $Ks \approx 16$ can be used.

IV.Holography: stellar orbits around Sagittarius A*

Fig. 1. A Keck/NIRC2 AO image from May 2010 showing the short-period star SO-102, which is, besides SO-2, the only star with full orbital phase coverage, and the electromagnetic counterpart of the black hole, Sgr A*. The image was taken at a wavelength of 2.12 μ m and shows the challenge of detecting SO-102, which is 16 times fainter than SO-2 and lies in this crowded region.

The Shortest-Known–Period Star Orbiting Our Galaxy's Supermassive Black Hole

L. Meyer,¹ A. M. Ghez,¹* R. Schödel,² S. Yelda,¹ A. Boehle,¹ J. R. Lu,³ T. Do,^{4,5} M. R. Morris,¹ E. E. Becklin,¹ K. Matthews⁶ Science, 5 Oct 2012

Conclusions

Holography: when to use it

Don't use it for very faint objects or if you need high time resolution, **don't use it** on isolated objects (preferred technique: sparse aperture masking). **Remember**: S/N in short-exposures is usually sky-limited.

Use it in these situations:

- Highly extinguished fields with not optical/IR bright guide or tip-tilt stars
- Dealing with **anisoplanatic effects** in crowded fields
- No AO available
- AO, but unstable correction
- Sensitive, high angular resolution imaging in the **optical regime**
- MIR imaging if there is a sufficiently bright reference object in the field

What to take away...

Holography...

- can be equivalent to or even superior to AO and is (almost always) superior to simple lucky imaging
- can make **optical diffraction limited imaging** possible **at 10m-telescopes**
- is **economic, powerful, and easy** (plug&play)
- is particularly **attractive for small telescopes**
- works with existing instruments (INGRID, NOTCAM, ASTRA-LUX, FASTCAM, HAWKI, NACO, VISIR), very little or no investment needed (RO electronics)
- Fast readout mode should be made available at all imaging instruments

Schödel, Yelda, Ghez, Girard, Labadie, Rebolo, Pérez-Garrido, Morris, 2012, MNRAS, accepted for publication, arXiv:1110. 2261 Thank you!