Magnetic activity and accretion in low-mass stars and brown dwarfs Beate Stelzer (INAF – OAPa)

Low Mass Star

Brown Dwarf

Jupiter

Earth

Magnetic activity at the bottom of the stellar sequence and beyond

Ultracool dwarfs (UCDs) = objects with SpT equal or later M7

Substellar objects = Brown Dwarfs = objects unable to burn hydrogen

Stars Late M and early-L SpT can be star or a brown dwarf depending on age

Young "ultracool" dwarfs are brown dwarfs

Chabrier & Baraffe (2000)

Can VLM stars and brown dwarf atmospheres be heated ?

Suppose: magnetic stress is generated in photosphere ($\tau \sim 1$) and transported to chromosphere + corona

Question: How much magnetic energy can be generated in photosphere of VLM stars / BDs ?

What is the magnetic Reynolds number?

Length scale Convective velocity Magnetic Reynolds-number $R_m=rac{
abla imes(v imes B)}{\eta
abla^2B}=rac{lv}{\eta}$

diffusivity

$$\eta = \frac{c}{4\pi\lambda} \qquad \begin{array}{c} \lambda \longrightarrow \infty \qquad R_m \longrightarrow \infty \\ \lambda \longrightarrow 0 \qquad R_m \longrightarrow 0 \end{array}$$

Possibly in UCD atmospheres the conductivity λ is very low

→No currents $j \sim \lambda E$ → $\nabla \times B = \frac{4\pi}{c} j = 0$ → $B = \nabla \Phi$ (potential field = state of minimum energy → there is no free energy)

Dynamo number
$$N_D = N_\alpha \cdot N_\Omega = \frac{\alpha L}{\beta} \cdot \frac{\nabla \Omega L^2}{\beta}$$
 $N_D \sim \frac{1}{R_0^2}$ $R_0 = \frac{P_{rot}}{\tau_{conv}}$...ratio between induction and diffusion terms

Activity/accretion and age in the VLM regime

Young brown dwarfs (~ 1 Myr) are • warm

significant ionization in atmosphere that enables coupling matter-field

• bright

If magnetic activity saturates,

i.e.
$$\log\left(\frac{L_x}{L_{bol}}\right) = const.$$

bright activity signatures easy to detect

• far (>140pc)

faint signal

ongoing accretion

need to disentangle accretion vs activity signatures

Old ultracool dwarfs (Gyr) are • cool

little ionization in atmosphere, coupling matter-field questionable

• faint

If magnetic activity saturates,

i.e.
$$\log\left(\frac{L_x}{L_{bol}}\right) = const.$$

faint activity signatures difficult to detect

• nearby (many in 10...20 pc)

good signal

X-ray vs. bolometric luminosity for young BDs

In Orion L_x / L_{bol} of BDs identical to higher-mass stars, in Taurus lower?

X-ray vs. bolometric luminosity for young BDs

Open cluster IC 348: Age = 2-3 Myr Dist = 320 pc > 300 opt/IR members

4 Chandra pointings in IC348 Partially overlapping (t_{max} ~ 180ksec)

PROPERTIES	Infalling Protostar	Evolved Protostar	Classical T Tauri Star	V eak-lined T Tauri Star	Main Sequence Star
SKETCH			Nor Nor	X	• () •
Age (years)	10 ⁴	10 ⁵	10 ⁶ - 10 ⁷	10 ⁶ - 10 ⁷	> 10 ⁷
mm/INFRARED CLASS	Class 0	Class I	Class II	Class III	(Class III)
Disk	Yes	Thick	Thick	Thin or Non-existent	Possible Planetary System
X-RAY	?	Yes	Strong	Strong	Weak
THERMAL RADIO	Yes	Yes	Yes	No	No
Non-Thermal Radio	No	Yes	No ?	Yes	Yes

Stelzer et al. (2012a)

In IC348: L_x/L_{bol} steeper than in ONC

In IC348: L_x / L_{bol} steeper for Class II than for Class III

X-ray vs. bolometric luminosity for young BDs

X-ray vs. bolometric luminosity for evolved BDs

SDSS 0.5 x 0.5 sq.deg

Burgasser et al. (2005)

An X-shooter survey of galactic star forming regions: low and sub-stellar mass objects

Italian GTO time PI: Juan M. Alcalá INAF – Napoli

CoIs:

- E. Covino
- F. Bacciotti, A. Natta, L.Testi, S. Randich, E.Rigliaco
- S. Bonito, E. Flaccomio, G.Micela, B.Stelzer
- G. Cupani
- B. Nisini
- A. Frasca, F.Leone
- E. Whelan
- A. Scholz

INAF - Napoli INAF - Arcetri INAF - Palermo INAF - Trieste INAF - Rome INAF - Catania Grenoble Dublin

Topics to be addressed

Within X-shooter survey in low-mass SFRs:

- YSO fundamental parameters across the mass spectrum
- Disk parameters and their link with stellar parameters

Young BDs display most observed characteristics of low-mass YSOs

Sample for the X-Shooter GTO survey

- Objects with low A_v: exploit full X-shooter range
- Targets with as much photometry as possible (UV-IR)
- Mostly very low-mass (M < 0.5 M_{\odot}) YSOs with disk
- YSOs in well characterized clusters
- Individual interesting targets

Observations almost completed:								
total of 8 nights							1.0"/0.9"/0.9"	
——— Number of stars ——— Age						(R ~ 5	100/8800/5600)	
Region	$< 0.1 M_{\odot}$	$> 0.1 M_{\odot}$	Total	Observed	[Myr]			
Lupus	15	28			2-3	0.5"/0.4"	'/0.4"	
$\sigma \operatorname{Ori}$	15	16	~	60	3-5	(R ~ 9)	100/17400/11300)	
TWHya	5	17			~ 10	00		
FU Tau	0.05	M_{\odot} ?	1	1	2-3	140		
DENIS 1048-39			1	1	young disk	4		

The enigmatic benchmark Brown Dwarf FU Tau

most BD formation mechanisms involve nearby higher-mass stars (ejection, disk fragmentation,

M7.25 + M9.25 (A + B)

Blu and IR excess \rightarrow disks

New observational material for FU Tau A

B215

10

Known wide BD binaries

The enigmatic benchmark Brown Dwarf FU Tau

FUTau A is "peculiar": far above the evolutionary models in the HR diagram and not coeval with FUTau B

 \rightarrow Extreme youth ?

→ Strong accretion (excess luminosity) ?

→ What is its mass ? ("wrong" T_{eff} due to reduced convection or star spots;

Chabrier et al. 2007; MacDonald & Mullan 2009

 \rightarrow Foreground object ?

Luhman et al. (2009)

X-ray observation of FU Tau A

X-ray observation of FU Tau A Emission from accretion shocks?

X-ray observation of FU Tau A Emission from accretion shocks?

Highest quality X-ray data for a BD so far: ~ 600 cts for FUTauA

→Untypically low
 temperature (0.24 keV);
 as in the prototype
 accreting TTS TW Hya !

X-rays from accretion diagnosed by 1) Soft spectrum $T_{psh} = \frac{3}{16} \frac{\mu m_p}{k_B} v_0^2$ 2) High density

X-rays from accretion shock in FU Tau A? The velocity problem

Diagnostics of mass accretion 10% width of H α emission

Evolutionary state of FU Tau A?

FU Tau A has high accretion rate for Taurus

FU Tau A has low X-ray temperature and high X-ray luminosity

 \rightarrow Is FU Tau A extremely young?

Or more massive?

Stellar parameters of FU Tau A?

Rotation/magn.field + spot coverage reduces convective flux (Chabrier et al. 2007) →enhanced radiation transport →steeper temp.gradient

 \rightarrow cooler T_{eff}

 \rightarrow decrease of interior temp. and expansion

Magn.field influences criterion for convective stability (MacDonald & Mullan 2009) →evol.track shifts to the right

> BD eclipsing binary 2M0532-05: More massive component is cooler (Stassun et al. 2007)

Stellar parameters of FU Tau A?

Rotation/magn.field + spot coverage reduces convective flux (Chabrier et al. 2007) →enhanced radiation transport →steeper temp.gradient

 \rightarrow cooler T_{eff}

 \rightarrow decrease of interior temp. and expansion

Rotation period of FU Tau A CAFOS + BUSCA monitoring

Rotation period of FU Tau A CAFOS + BUSCA monitoring

Spot modeling:

DUSTY photosphere (3000K) + 1 spot with filling factor f (DUSTY or BB)

The X-Shooter spectrum of FU Tau A

The X-Shooter spectrum of FU Tau A

Mass accretion rate

Mass accretion rate and accretion luminosity

Balmer jump modeling

X-Shooter accretion diagnostics The case of 2M1207 (TWA-27)

Conclusions for FU Tau A

....is a strong and soft X-ray source (similar to TW Hya)

....has both cool and hot surface spots

 \rightarrow spot coverage may affect convection and stellar parameters

 \rightarrow accretion spots

FU Tau A

....has variable accretion

Most likely explanations:

A) FU Tau A has higher mass than inferred from evolutionary models

tainty. In addition, the unknown evolutionary stage and accretion history means that we cannot trust the isochrones for mass estimates. Thus, barring a more complete understanding of magnetic activity and its effect on the observable properties as well as protostellar evolution it does not seem feasible to derive a mass function for very young very low mass stars and brown dwarfs.

B) FU Tau A is at closer distance

The testcase ultracool radio dwarf: TVLM513-46546

Observations:

- periodic 100% LH + RH polar. Bursts in both bands; stronger @ 8.44GHz
- unpolarized persistent emission
- 2 bursts per rotation @ 4.88 GHz

ightarrow need for beamed mechanism that produces polarized emission

Electron cyclotron maser Application to the ultracool dwarf TVLM 513-46

- Electron cyclotron maser
 instability caused by resonance between gyrating electrons and el.magn wave
- \rightarrow ECM works if there is
 - 1) an anisotropic electron velocity distribution
 - strong magnetic field or low density:

Scenario for ECM on TVLM513:

Hallinan et al. (2006)

plasma trapped at low latitudes in radiation belts, plasma cavity near poles ("coronal holes"): $\nu_{cyc} = 2.8 \cdot 10^6 B >> \nu_{pl} = 9000 \sqrt{n_e}$ electric field parallel magnetic field injects trapped electrons into cavity, e.g. by potential drop of ions and electrons mirroring at different locations

 \rightarrow polarized, broad-band radio emission

Simultaneous multi- λ observations of TVLM513-46546

No clear evidence for correlation between emission in different bands; likely both dipolar and multi-polar field components present.

- frequent emission line flaring
- variable UV correlated with X-rays
- minimum UV flux ~ 1 dex higher than photospheric level \rightarrow persistent transition region

The Guedel-Benz relation (Correlation of L_R and L_X)

 $\log L_{\rm X} \approx \log L_{\rm R} + 15.5$

Assume gyrosynchrotron for radio, Power-law electron distribution with $\delta^{\sim}3$

→compute fraction of total input energy that goes into particle acceleration ("a") and

that goes into X-ray luminosity ("b"):

$$\dot{E} = \frac{1}{a} \int_{\epsilon_0}^{\infty} \dot{N}(\epsilon) \epsilon \, d\epsilon = \frac{1}{b} L_{\mathbf{X}}$$

$$L_R = 9.6 \times 10^{-23} B^{2.48} \frac{a}{b} \tau_0(\alpha + 1) L_X$$

X-ray and radio luminosities correlated over 6 dex for various types of stars (independent on age,spectral type, binarity, rotation, chromospheric activity)

⁼ constant for all stars !

L_R and L_X of ultracool dwarfs

DENIS1048:

New X-ray detection (1 dex deeper than previous upper limit)fits into radio-bursting group (no X-ray flare observed yet, but H α flare Fuhrmeister & Schmitt 2004)

Rotation-activity connection for ultracool dwarfs ?

Fast rotators violate Benz-Guedel relation more than slow rotators (Berger et al. 2008)

radio ruled by rotation, but X-rays not ?
 OR

lated to their longer rotation periods. For $v \sin i \sim 10$ km/s and a 'canonical' radius of $0.1 R_{\odot}$ the maximum period is ~ 0.5 d, much longer than the typical duration of the radio observations

• selection effect: radio bursts not yet identified on slow rotators ?

X-Shooter spectrum of DENIS1048-3956

Flux-flux relations for chromospheric activity

Martinez-Arnaiz et al. (2011)

Sample:

300 single F...M dwarfs incl. `normal' dwarfs and emission line stars

Simultaneous data for many activity diagnostics

Results:

• Power-law relations between pairs of line fluxes

with slope depending on difference of atmospheric height for the two emitting regions

Flux-flux relations for chromospheric activity

- Power-law relations between pairs of line fluxes with slope depending on difference of atmospheric height for the two emitting regions
- X-ray saturated K...M stars have H α excess + are distinguished in H α vs. B-V diagram \rightarrow younger age ? [14/39 member of young associations + 16/39 have high Li abundance]

Chromospheric flux-flux relations for ultracool dwarfs

follow the early-M dwarf relation

(due to bias?)

Physical conditions of emitting plasma Balmer decrements

- DENIS1048 vs. Sun: resembles solar flare not quiet Sun
- UCDs have high Hα/Hβ (with flare/quies. trend opposite to Sun)

Physical conditions of emitting plasma $H\alpha/H\beta$ decrements

Increasing H α decrement with later SpT confirmed by DENIS1048 LHS2085 + vB10

Conclusions for DENIS1048-3956

DENIS1048-3956

....is a bursting radio and quiescent X-ray source ("ECM group")

....has (weak) optical chromospheric emission line spectrum:

roughly consistent with flux-flux relations of early-M dwarfs

but high H α /H β ratio possibly typical for UCDs

Detailed analysis of activity + accretion in a statistical sample of VLM stars and BDs with X-Shooter underway