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B"3Z13&%#"&$66)(;,360 M. A. C. Perryman et al.: GAIA: Formation of the Galaxy
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Fig. 8. Model of CCD data interrelations for an astronomical object. In principle, the data analysis aims to provide the “best”
representation of the observed data in terms of the object model, satellite attitude and instrument calibration. Certain data and
models can, from the viewpoint of the data analysis, be regarded as “given”; in the figure these are represented by the satellite
orbit (in the barycentric reference system) and the relativistic model used to compute celestial directions. Other model data
are adjusted to fit the observations (dashed lines)

objects and their characteristics. In principle the analy-
sis is done by adjusting the object, attitude and instru-
ment models until a satisfactory agreement is found be-
tween predicted and observed data (dashed lines in Fig. 8).
Successful implementation of the data analysis task will
require expert knowledge from several different fields of as-
tronomy, mathematics and computer science to be merged
in a single, highly efficient system (O’Mullane & Lindegren
1999).

The global astrometric reductions must be formulated
in a fully general relativistic framework, including post-
post-Newtonian effects of the spherical Sun at the 1 µas
level, as well as including corrections due to oblateness
and angular momentum of Solar System bodies.

Processing these vast amounts of data will require
highly automated and efficient numerical methods. This
is particularly critical for the image centroiding of the el-
ementary astrometric and photometric observation in the
astrometric instruments, and the corresponding analysis
of spectral data in the spectrometric instrument.

Accurate and efficient estimation of the centroid coor-
dinate based on the noisy CCD samples is crucial for the
astrometric performance. Simulations indicate that 6 sam-
ples approximately centred on the peak can be read out
from the CCD. The centroiding, as well as the magnitude
estimation, must be based on these six values. Results
of a large number of Monte Carlo experiments, using a
maximum-likelihood estimator as the centroiding algo-
rithm, indicate that a rather simple maximum-likelihood
algorithm performs extremely well under these idealized
conditions, and that six samples is sufficient to determine
the centroid accurately. Much work remains to extend the
analysis to more complex cases, including in particular
overlapping stellar images.

A preliminary photometric analysis, for discovery of
variables, supernovae, etc., can be carried out using stan-
dard photometric techniques immediately after data de-
livery to the ground. In addition, more detailed modelling
of the local background and structure in the vicinity of

each target using all the mission data in all the passbands
will be required. A final end-of-mission re-analysis may
benefit from the astrometric determination of the image
centroids, locating a well-calibrated point spread function
for photometric analysis. Studies of these photometric re-
ductions have begun.

The high-resolution (radial velocity) spectrometer will
produce spectra for about a hundred million stars, and
multi-epoch, multi-band photometry will be obtained for
about one billion stars. The analysis of such large num-
bers of spectra and photometric measurements needs to be
performed in a fully automated fashion, with no manual
intervention. Automatic determination of (at least) the
surface temperature Teff , the metallicity [M/H], and the
relative α element abundance [α/Fe] is necessary; deter-
mination of log g is, given the availability of parallaxes for
most stars, of lesser importance. A fully automated sys-
tem for the derivation of astrophysical parameters from
the large number of spectra and magnitudes collected by
GAIA, using all the available information for each star,
has been studied, showing the feasibility of an approach
based on the use of neural networks. In the classification
system foreseen, spectra and photometric measurements
will be sent to an “initial classifier”, to sort objects into
stellar and non-stellar. Specialist networks then treat each
class. For example, stellar data sets are passed to an “au-
tomated stellar parameterization” sub-package.

It is the physical parameters of stars which are really
of interest; therefore the proposed system aims to derive
physical parameters directly from a stellar spectrum and
photometry. Detailed simulations of the automated stel-
lar parameterization system have been completed using a
feed-forward neural network operating on the entire set of
spectral and photometric measurements. In such a system,
the derived values for the stellar parameters are naturally
linked to the models used to train the network. Given the
extreme rapidity of neural networks, when stellar atmo-
sphere models are improved, re-classification of the en-
tire data set can be done extremely quickly: an archive of

=)1;31#%43"#%b$33>#1(%$*%16H%8CDDPF

U%TCD%U%PD
E

%_%DEDF

20

a7+$3G)(;%53"0$++,

‣ 95513$(*%+"230$%#"*)"(%"(%*/$%+J>A

‣ 53"51;1*)"(%"4%6);/*%*"%K1)1A

‣ 9+*3"#$*3)0%cc=+%3$1&"2*A

*>5)0166>%YUP%7)(($&%0"2(*)(;%53"'6$



a7+$3G)(;%53"0$++,

‣ 95513$(*%+"230$%#"*)"(%"(%*/$%+J>A

‣ 53"51;1*)"(%"4%6);/*%*"%K1)1A

‣ 9+*3"#$*3)0%cc=+%3$1&"2*A

*>5)0166>%YUPC%1(&%7)(($&%%*"%YUPA

*/$+$%5/"*"M$6$0*3"(%0"2(*+%13$%

5/"*"(%(")+$%&"#)(1*$&%8b")++"(FH

22

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 
W

FS
1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 

W
FS

1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 
W

FS
1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 



a7+$3G)(;%53"0$++,

‣ 95513$(*%+"230$%#"*)"(%"(%*/$%+J>A

‣ 53"51;1*)"(%"4%6);/*%*"%K1)1A

‣ 9+*3"#$*3)0%cc=+%3$1&"2*A

*>5)0166>%YUPC%1(&%7)(($&%%*"%YUPA

*/$+$%5/"*"M$6$0*3"(%0"2(*+%13$%

5/"*"(%(")+$%&"#)(1*$&%8b")++"(FH

22

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 
W

FS
1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 

W
FS

1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 

!"#$%&'(%)#*%
+,",-",+.

/0#-,%123+415

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 
W

FS
1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 



a7+$3G)(;%53"0$++,

‣ 95513$(*%+"230$%#"*)"(%"(%*/$%+J>A

‣ 53"51;1*)"(%"4%6);/*%*"%K1)1A

‣ 9+*3"#$*3)0%cc=+%3$1&"2*A

*>5)0166>%YUPC%1(&%7)(($&%%*"%YUPA

*/$+$%5/"*"M$6$0*3"(%0"2(*+%13$%

5/"*"(%(")+$%&"#)(1*$&%8b")++"(FH

22

windows 
observed:

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 
W

FS
1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 

W
FS

1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 
W

FS
1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 



a7+$3G)(;%53"0$++,

‣ 95513$(*%+"230$%#"*)"(%"(%*/$%+J>A

‣ 53"51;1*)"(%"4%6);/*%*"%K1)1A

‣ 9+*3"#$*3)0%cc=+%3$1&"2*A

*>5)0166>%YUPC%1(&%7)(($&%%*"%YUPA

*/$+$%5/"*"M$6$0*3"(%0"2(*+%13$%

5/"*"(%(")+$%&"#)(1*$&%8b")++"(FH

22

windows 
observed:
windows 

transmitted:

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 
W

FS
1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 

W
FS

1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 
W

FS
1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 



a7+$3G)(;%53"0$++,

‣ 95513$(*%+"230$%#"*)"(%"(%*/$%+J>A

‣ 53"51;1*)"(%"4%6);/*%*"%K1)1A

‣ 9+*3"#$*3)0%cc=+%3$1&"2*A

*>5)0166>%YUPC%1(&%7)(($&%%*"%YUPA

*/$+$%5/"*"M$6$0*3"(%0"2(*+%13$%

5/"*"(%(")+$%&"#)(1*$&%8b")++"(FH

23

windows 
transmitted:



a7+$3G)(;%53"0$++,

‣ 95513$(*%+"230$%#"*)"(%"(%*/$%+J>A

‣ 53"51;1*)"(%"4%6);/*%*"%K1)1A

‣ 9+*3"#$*3)0%cc=+%3$1&"2*A

*>5)0166>%YUPC%1(&%7)(($&%%*"%YUPA

*/$+$%5/"*"M$6$0*3"(%0"2(*+%13$%

5/"*"(%(")+$%&"#)(1*$&%8b")++"(FH

23

windows 
transmitted:

Along-scan pixel!

        0    1   2    3    4    5    6    7   8    9   10  11  12!

P
h
o
to

 e
le

c
tr

o
n
s
!

4x104 

 3x104 

 2x104!

 1x104 

 0!

!"#$%&$'()*"+,-



a7+$3G)(;%53"0$++,

‣ 95513$(*%+"230$%#"*)"(%"(%*/$%+J>A

‣ 53"51;1*)"(%"4%6);/*%*"%K1)1A

‣ 9+*3"#$*3)0%cc=+%3$1&"2*A

*>5)0166>%YUPC%1(&%7)(($&%%*"%YUPA

*/$+$%5/"*"M$6$0*3"(%0"2(*+%13$%

5/"*"(%(")+$%&"#)(1*$&%8b")++"(FH

23

windows 
transmitted:

=

Along-scan pixel!

        0    1   2    3    4    5    6    7   8    9   10  11  12!

P
h
o
to

 e
le

c
tr

o
n
s
!

4x104 

 3x104 

 2x104!

 1x104 

 0!

!"#$%&$'()*"+,-



a7+$3G)(;%53"0$++,

‣ 95513$(*%+"230$%#"*)"(%"(%*/$%+J>A

‣ 53"51;1*)"(%"4%6);/*%*"%K1)1A

‣ 9+*3"#$*3)0%cc=+%3$1&"2*A

*>5)0166>%YUPC%1(&%7)(($&%%*"%YUPA

*/$+$%5/"*"M$6$0*3"(%0"2(*+%13$%

5/"*"(%(")+$%&"#)(1*$&%8b")++"(FH

23

windows 
transmitted:

=

Along-scan pixel!

        0    1   2    3    4    5    6    7   8    9   10  11  12!

P
h
o
to

 e
le

c
tr

o
n
s
!

4x104 

 3x104 

 2x104!

 1x104 

 0!

!"#$%&$'()*"+,-

./0

Along-scan pixel!

        0    1   2    3    4    5    6    7   8    9   10  11  12!

In
te

n
s
it
y
!

1/0



a7+$3G)(;%53"0$++,

‣ 95513$(*%+"230$%#"*)"(%"(%*/$%+J>A

‣ 53"51;1*)"(%"4%6);/*%*"%K1)1A

‣ 9+*3"#$*3)0%cc=+%3$1&"2*A

*>5)0166>%YUPC%1(&%7)(($&%%*"%YUPA

*/$+$%5/"*"M$6$0*3"(%0"2(*+%13$%

5/"*"(%(")+$%&"#)(1*$&%8b")++"(FH

23

windows 
transmitted:

=

Along-scan pixel!

        0    1   2    3    4    5    6    7   8    9   10  11  12!

P
h
o
to

 e
le

c
tr

o
n
s
!

4x104 

 3x104 

 2x104!

 1x104 

 0!

!"#$%&$'()*"+,-

./0

Along-scan pixel!

        0    1   2    3    4    5    6    7   8    9   10  11  12!

In
te

n
s
it
y
!

Along-scan pixel!

        0    1   2    3    4    5    6    7   8    9   10  11  12!

P
h
o
to

 e
le

c
tr

o
n
s
!

4x104 

 3x104 

 2x104!

 1x104 

 0!

2!-$%*"&3&$'4('&5-67

1/0

tl → t1, t2, . . . , t720



a7+$3G)(;%53"0$++,

‣ 95513$(*%+"230$%#"*)"(%"(%*/$%+J>A

‣ 53"51;1*)"(%"4%6);/*%*"%K1)1A

‣ 9+*3"#$*3)0%cc=+%3$1&"2*A

*>5)0166>%YUPC%1(&%7)(($&%%*"%YUPA

*/$+$%5/"*"M$6$0*3"(%0"2(*+%13$%

5/"*"(%(")+$%&"#)(1*$&%8b")++"(FH

23

windows 
transmitted:

=

Along-scan pixel!

        0    1   2    3    4    5    6    7   8    9   10  11  12!

P
h
o
to

 e
le

c
tr

o
n
s
!

4x104 

 3x104 

 2x104!

 1x104 

 0!

!"#$%&$'()*"+,-

./0

Along-scan pixel!

        0    1   2    3    4    5    6    7   8    9   10  11  12!

In
te

n
s
it
y
!

Along-scan pixel!

        0    1   2    3    4    5    6    7   8    9   10  11  12!

P
h
o
to

 e
le

c
tr

o
n
s
!

4x104 

 3x104 

 2x104!

 1x104 

 0!

2!-$%*"&3&$'4('&5-67

1/0

tl → t1, t2, . . . , t720

sampled

image

{Nk}
observed 

counts

sampling

comparison

iterative parameter update

L
PSF/LSF

model

~

!, ", #
scene

parameters

image
D[{$k}] 
modelled

counts

!

serial

binning

c

CDM parameters

illumination history

h
AGIS

!conv CDM

b3"&d/"##$%e%:"66%$*%16H%8CDPPF

G:+3"%B+#+:"/"#%"./1:+/1',



9+*3"#$*3)0%+"62*)"(

?+*)#1*$+%5131#$*$3+%"4%[%#"&$6+,

‣ 8!F%!"230$%%%%%%%%%%S%U%PD
E

%5131#

‣ 89F%9**)*2&$%%%%%%%%%%O%PD
Q

%5131#

‣ 8cF%c16)731*)"(%%%%%%O%PD
Y

%5131#

‣ 8KF%K6"716%%%%%%%%%%%%%%%f%PD
C

%5131#

t1 , t2 , . . . , t720

24



9+*3"#$*3)0%+"62*)"(

?+*)#1*$+%5131#$*$3+%"4%[%#"&$6+,

‣ 8!F%!"230$%%%%%%%%%%S%U%PD
E

%5131#

‣ 89F%9**)*2&$%%%%%%%%%%O%PD
Q

%5131#

‣ 8cF%c16)731*)"(%%%%%%O%PD
Y

%5131#

‣ 8KF%K6"716%%%%%%%%%%%%%%%f%PD
C

%5131#

t1 , t2 , . . . , t720

−→µ

∼
�

Gaia focal plane (106 CCDs) 

detection 
and FOV 

discrimination 

astrometric 
measurements 

photometry 
(dispersed 

images) 

radial velocity 
(dispersed 
images) 

BAM = basic angle monitor, WFS = wavefront sensor 

W
FS

1  

W
FS

2  
B

A
M

2  
B

A
M

1  

S
M

1  

S
M

2  

A
F1

 

A
F2

 

A
F3

 

A
F4

 

A
F5

 

A
F6

 

A
F7

 

A
F8

 

A
F9

 

B
P  R
P  

R
V

S
1  

R
V

S
2  

R
V

S
3  

0.
42

 m
 

0.93 m 

AC 

AL 

(α
, δ

) J2
01

6

a

cg

25

is



t1 , t2 , . . . , t720

ac g

‣ @$1+*%+g213$+%+"62*)"(,

PD
PD%

%5131#$*$3+%2+)(;%PD
PC

%"7+$3G1*)"(+A

‣ &)3$0*%+"62*)"(%2(4$1+)76$%

8h"#732(%$*%16H%CDPPFA

‣ 2+$%9+*3"#$*3)0%K6"716%i*$31*)G$%!"62*)"(,%

9Ki!%8@)(&$;3$(%$*%16H%CDPCF

9+*3"#$*3)0%+"62*)"(

?+*)#1*$+%5131#$*$3+%"4%[%#"&$6+,

‣ 8!F%!"230$%%%%%%%%%%S%U%PD
E

%5131#

‣ 89F%9**)*2&$%%%%%%%%%%O%PD
Q

%5131#

‣ 8cF%c16)731*)"(%%%%%%O%PD
Y

%5131#

‣ 8KF%K6"716%%%%%%%%%%%%%%%f%PD
C

%5131#

26

stl − fl( , , , )
min

s, a, c, g

�

l

�

σl

�2



00h 00m 00s - 00h 01m 15s 2
1 - 100

Number Descriptor: epoch J1991.25 Position: epoch J1991.25 Par. Proper Motion Standard Errors Astrometric Correlations (%) Soln
HIP RA Dec V ! (ICRS) " # µ!$ µ" !$ " # µ!$ µ"

"
!$

#
!$

#
"

µ!$
!$

µ!$
"

µ!$
#

µ"
!$

µ"
"

µ"
#

µ"
µ!$

F1 F2

h m s ±° % & mag deg deg mas mas/ yr mas mas mas/ yr %
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 00 00 00.22 + 01 05 20.4 9.10 H 0.000 911 85 + 01.089 013 32 3.54 – 5.20 – 1.88 1.32 0.74 1.39 1.36 0.81 + 32 – 7 – 11 – 24 + 9 – 1 + 10 – 1 + 1 + 34 0 0.74
2 00 00 00.91 – 19 29 55.8 9.27 G 0.003 797 37 – 19.498 837 45 + 21.90 181.21 – 0.93 1.28 0.70 3.10 1.74 0.92 + 12 – 14 – 24 – 29 + 1 + 21 – 2 – 19 – 28 + 14 2 1.45
3 00 00 01.20 + 38 51 33.4 6.61 G 0.005 007 95 + 38.859 286 08 2.81 5.24 – 2.91 0.53 0.40 0.63 0.57 0.47 + 6 + 9 + 4 + 43 – 1 – 6 + 3 + 24 + 7 + 21 0 – 0.45
4 00 00 02.01 – 51 53 36.8 8.06 H 0.008 381 70 – 51.893 546 12 7.75 62.85 0.16 0.53 0.59 0.97 0.65 0.65 – 22 – 9 – 3 + 24 + 20 + 8 + 18 + 8 – 31 – 18 0 – 1.46
5 00 00 02.39 – 40 35 28.4 8.55 H 0.009 965 34 – 40.591 224 40 2.87 2.53 9.07 0.64 0.61 1.11 0.67 0.74 + 10 + 24 + 6 + 26 – 10 + 20 – 16 – 30 – 19 + 6 0 – 1.24

6 00 00 04.35 + 03 56 47.4 12.31 G 0.018 141 44 + 03.946 488 93 18.80 226.29 – 12.84 4.03 2.18 4.99 6.15 3.20 + 35 – 1 + 3 – 11 – 2 + 47 – 2 + 3 + 31 + 35 4 2.95
7 00 00 05.41 + 20 02 11.8 9.64 G 0.022 548 91 + 20.036 602 16 17.74 – 208.12 – 200.79 1.01 0.79 1.30 1.13 0.82 + 32 + 8 – 2 – 4 + 12 + 6 + 11 + 0 + 16 + 43 0 0.21
8 00 00 06.55 + 25 53 11.3 9.05 3 H 0.027 291 60 + 25.886 474 45 5.17 19.09 – 5.66 1.70 0.93 1.95 1.54 0.88 + 27 – 66 – 36 – 38 – 12 + 36 – 21 – 24 + 32 + 18 0 0.98
9 00 00 08.48 + 36 35 09.4 8.59 H 0.035 341 89 + 36.585 937 77 4.81 – 6.30 8.42 0.86 0.55 0.99 1.02 0.65 + 3 + 16 – 1 + 0 + 7 – 2 + 8 + 4 + 10 + 13 3 – 1.26

10 00 00 08.70 – 50 52 01.5 8.59 H 0.036 253 09 – 50.867 073 60 10.76 42.23 40.02 0.77 0.73 1.10 0.98 0.82 – 13 – 24 + 11 + 1 – 7 + 6 + 0 – 18 – 22 – 13 0 0.82

11 00 00 08.95 + 46 56 24.0 7.34 H 0.037 296 95 + 46.940 001 54 4.29 11.09 – 2.02 0.52 0.51 0.84 0.53 0.54 + 9 + 20 + 31 – 30 + 0 – 11 + 6 + 21 + 26 + 5 0 – 0.23
12 00 00 09.82 – 35 57 36.8 8.43 H 0.040 917 56 – 35.960 224 82 4.06 – 5.99 – 0.10 0.81 0.58 1.16 1.02 0.72 + 13 – 9 – 17 – 36 + 0 + 16 – 1 – 41 + 29 + 2 2 0.76
13 00 00 10.00 – 22 35 40.9 8.80 H 0.041 679 70 – 22.594 680 60 3.49 8.45 – 10.07 1.21 0.67 1.48 1.44 0.59 + 15 + 23 + 24 + 9 + 9 + 24 – 5 – 37 – 4 – 10 0 – 0.46
14 00 00 11.59 – 00 21 37.5 7.25 G 0.048 271 89 – 00.360 421 19 5.11 61.75 – 11.67 0.88 0.54 0.99 1.12 0.59 + 34 + 1 – 21 + 23 – 3 + 11 + 1 – 24 + 27 + 40 0 – 0.31
15 00 00 12.07 + 50 47 28.2 8.60 H 0.050 308 90 + 50.791 173 84 2.45 13.88 5.47 0.66 0.70 1.16 0.78 0.70 – 27 + 8 + 27 + 22 + 5 + 9 + 6 – 6 + 14 – 19 0 0.35

$16 00 00 12.34 – 54 54 50.9 11.71 G 0.051 408 52 – 54.914 128 19 0.53 257.39 – 96.63 1.49 1.67 2.63 1.81 1.95 – 27 – 7 – 13 + 2 + 3 + 4 + 5 – 8 – 9 – 22 0 0.76
$17 00 00 12.26 – 40 11 32.4 8.15 H 0.051 099 57 – 40.192 328 42 6.15 – 34.46 – 26.37 0.57 0.55 1.00 0.61 0.65 + 18 + 24 + 13 + 29 – 7 + 11 – 15 – 35 – 18 + 11 0 – 0.62

18 00 00 12.75 – 04 03 13.5 11.03 G 0.053 139 23 – 04.053 738 13 19.93 – 127.22 23.78 2.18 1.20 2.36 2.69 1.15 + 24 + 19 + 4 – 8 + 3 + 15 + 3 – 30 + 26 + 18 3 0.05
19 00 00 12.80 + 38 18 14.7 6.53 H 0.053 316 96 + 38.304 086 36 4.12 – 2.50 – 15.07 0.55 0.40 0.64 0.60 0.45 + 9 – 5 + 3 + 53 – 8 – 10 – 4 + 21 + 8 + 23 0 – 0.84
20 00 00 15.11 + 23 31 45.4 8.51 G 0.062 950 50 + 23.529 283 97 10.76 36.00 – 22.98 0.88 0.59 1.06 0.92 0.59 + 30 + 39 + 19 + 10 + 2 + 8 + 9 – 5 + 20 + 32 0 0.50

21 00 00 15.90 + 08 00 26.0 7.55 H 0.066 235 69 + 08.007 234 37 5.84 61.89 – 0.22 0.84 0.51 0.95 0.84 0.56 + 20 + 13 – 9 – 10 + 1 + 3 + 6 – 16 + 30 + 36 2 2.05
22 00 00 16.83 – 49 21 08.2 8.69 H 0.070 135 93 – 49.352 266 86 4.47 – 7.90 0.46 0.63 0.79 1.15 0.71 0.93 – 6 – 1 – 10 – 16 – 14 + 8 – 12 – 26 – 6 + 7 0 – 0.40
23 00 00 17.86 + 13 18 44.0 7.57 G 0.074 429 30 + 13.312 210 83 12.21 54.15 9.65 0.90 0.52 0.95 0.91 0.55 + 17 + 10 + 12 – 23 + 19 + 9 + 15 – 1 + 10 + 36 0 0.32
24 00 00 18.25 – 23 27 09.9 9.05 H 0.076 049 79 – 23.452 749 13 9.73 127.15 22.22 1.00 0.61 1.21 1.21 0.55 + 3 – 12 + 21 – 10 + 12 + 27 + 1 – 37 – 2 – 13 1 0.24
25 H 00 00 19.05 – 44 17 25.1 6.28 G 0.079 365 37 – 44.290 297 41 A 13.74 58.36 – 108.64 0.88 0.81 0.98 0.73 0.68 – 32 + 18 – 7 + 2 – 14 + 2 – 10 – 25 + 10 – 2 2 – 0.52

26 00 00 20.24 – 13 23 35.9 9.13 H 0.084 345 79 – 13.393 296 86 9.19 – 103.33 – 33.35 1.00 0.83 1.34 1.42 0.75 + 42 – 13 – 12 – 12 – 16 + 33 – 24 – 55 + 25 + 31 0 – 0.56
27 00 00 20.51 – 41 17 51.1 9.32 H 0.085 469 76 – 41.297 536 96 9.66 135.96 – 113.67 0.82 0.73 1.38 0.95 0.94 – 2 – 6 + 7 + 19 – 3 + 6 – 4 – 34 – 15 – 4 2 – 0.07
28 00 00 20.94 – 43 21 42.5 8.83 H 0.087 248 71 – 43.361 799 62 5.64 – 10.96 – 8.69 0.71 0.60 1.05 0.83 0.78 + 5 – 3 – 11 + 17 – 15 + 26 – 14 – 45 + 8 + 8 0 – 0.76
29 00 00 22.11 – 49 06 28.6 9.14 H 0.092 131 06 – 49.107 955 05 2.85 26.86 4.05 0.75 0.92 1.40 0.79 1.09 – 9 – 11 – 18 – 24 – 8 – 3 – 11 – 24 + 8 + 0 0 – 0.23
30 00 00 23.07 + 42 08 29.4 8.26 H 0.096 135 63 + 42.141 498 82 3.79 – 8.44 – 10.14 0.53 0.53 0.88 0.72 0.54 + 7 + 11 + 26 – 9 – 5 – 14 + 2 + 14 + 16 – 8 0 0.03

31 00 00 23.54 + 02 40 31.7 7.63 H 0.098 093 90 + 02.675 477 68 1.84 – 4.88 – 0.20 1.06 0.61 1.05 1.49 0.69 + 19 + 17 – 4 – 33 + 14 – 2 + 22 + 10 + 7 – 7 0 – 0.07
32 00 00 23.66 + 51 56 22.2 9.09 H 0.098 583 75 + 51.939 490 50 3.10 – 0.39 – 1.38 0.78 0.74 1.29 0.94 0.79 – 18 + 7 + 18 + 4 + 8 + 8 + 8 + 2 + 19 – 12 2 0.61
33 00 00 23.80 – 10 27 44.8 8.10 H 0.099 180 83 – 10.462 454 45 8.94 – 3.62 28.71 0.90 0.48 1.09 1.39 0.47 + 30 – 31 – 6 – 25 + 2 + 33 – 14 – 38 + 30 + 23 0 0.26
34 00 00 23.87 + 26 55 05.7 6.43 H 0.099 469 73 + 26.918 238 21 12.71 42.20 – 53.47 0.61 0.43 0.74 0.64 0.43 + 15 + 32 + 13 + 0 + 4 + 2 + 7 – 7 + 15 + 9 0 1.99
35 00 00 24.61 – 14 29 25.7 9.07 H 0.102 560 52 – 14.490 480 72 5.96 162.25 – 1.47 1.13 0.69 1.45 1.66 0.62 + 29 – 34 – 22 – 22 – 7 + 44 – 14 – 47 + 26 + 19 2 1.25

36 00 00 24.79 + 12 16 01.5 7.68 H 0.103 275 50 + 12.267 093 03 6.30 49.71 14.27 0.82 0.53 0.96 0.85 0.60 + 26 + 15 – 5 – 12 + 3 – 1 + 7 – 11 + 23 + 50 0 0.34
37 H 00 00 25.28 – 47 10 46.5 10.44 H 0.105 351 90 – 47.179 583 82 $ 3.74 – 6.92 7.03 3.67 2.50 2.72 2.23 2.14 + 10 – 14 – 8 – 13 – 9 + 12 – 9 – 26 + 11 – 4 2 – 0.24
38 00 00 26.65 – 79 03 42.6 8.65 H 0.111 046 94 – 79.061 831 33 23.84 162.30 – 62.40 0.64 0.68 0.78 0.74 0.64 + 10 – 4 – 14 + 5 + 9 – 5 + 7 – 4 + 3 + 13 0 – 1.56
39 00 00 26.85 – 16 41 48.9 7.46 G 0.111 861 48 – 16.696 930 20 10.98 169.72 – 32.54 0.95 0.61 1.18 1.40 0.57 + 30 – 2 – 2 – 32 – 6 + 17 – 12 – 47 + 14 + 11 2 – 0.03
$40 H 00 00 29.27 + 67 13 00.4 10.61 2 G 0.121 969 71 + 67.216 791 25 A – 3.40 – 2.99 – 3.18 3.83 3.95 4.25 4.14 3.75 – 11 – 9 + 24 – 4 + 12 + 17 + 8 – 21 + 12 – 10 7 1.79

$41 00 00 27.98 + 54 18 08.1 8.70 H 0.116 563 51 + 54.302 237 74 3.42 1.78 – 0.47 0.66 0.67 1.04 0.78 0.71 – 24 + 26 + 13 + 24 + 1 + 8 + 5 – 4 + 6 – 15 0 – 1.53
42 00 00 30.09 + 25 50 41.2 8.20 G 0.125 386 66 + 25.844 780 59 6.38 20.70 – 6.51 0.77 0.54 0.91 0.87 0.56 + 13 + 17 + 11 + 7 – 7 – 11 – 2 – 9 + 19 + 7 0 0.31
43 00 00 30.98 + 59 33 35.1 6.18 H 0.129 089 00 + 59.559 737 86 7.63 – 80.60 – 24.07 0.42 0.45 0.60 0.56 0.49 – 20 + 8 + 8 + 5 – 2 – 2 + 1 – 15 + 18 – 16 2 0.93
44 00 00 31.85 – 03 18 22.9 7.91 H 0.132 722 30 – 03.306 361 74 2.41 11.10 16.04 1.11 0.50 1.01 1.37 0.51 + 18 + 15 – 3 – 43 + 6 + 3 + 3 – 26 + 13 + 20 0 1.42
45 H 00 00 32.21 – 72 12 09.8 9.59 H 0.134 204 53 – 72.202 710 31 A 15.10 – 37.20 – 2.78 1.82 1.68 1.92 1.95 1.64 + 5 + 15 – 14 + 8 + 14 + 0 + 14 + 6 + 0 + 8 1 0.92

46 00 00 32.29 – 25 37 20.1 8.57 H 0.134 544 29 – 25.622 252 77 1.19 15.17 – 13.39 0.99 0.58 1.20 1.34 0.57 + 7 – 9 – 9 – 25 + 8 + 1 + 0 – 45 + 28 – 19 0 1.22
47 00 00 32.45 – 56 50 06.9 10.78 G 0.135 192 36 – 56.835 247 73 24.45 – 44.21 – 145.90 1.29 1.35 1.97 1.49 1.57 – 11 – 9 – 2 + 2 + 7 – 2 + 10 – 13 – 9 + 6 4 1.58
48 00 00 32.45 – 40 41 25.6 7.31 H 0.135 222 64 – 40.690 446 64 1.86 4.08 – 11.28 0.56 0.46 0.87 0.62 0.57 + 11 + 14 + 8 + 38 – 6 + 12 – 8 – 33 – 5 + 9 2 – 1.59
49 00 00 33.48 + 16 40 08.5 9.53 H 0.139 500 66 + 16.669 031 83 1.59 26.66 6.95 1.02 0.67 1.28 1.06 0.67 + 40 + 6 + 8 + 5 + 7 + 8 + 7 + 1 + 11 + 46 0 – 2.08
50 H 00 00 34.29 – 53 05 51.6 6.49 G 0.142 870 59 – 53.097 662 77 A 16.89 52.98 – 20.52 0.52 0.56 0.80 0.56 0.55 – 30 – 25 + 9 + 17 + 11 + 1 + 12 – 7 – 16 – 32 1 – 0.72

51 00 00 34.41 + 01 03 58.3 8.94 H 0.143 390 44 + 01.066 197 26 0.41 10.19 6.33 1.32 0.71 1.30 1.44 0.71 + 19 – 5 – 17 – 41 + 18 + 2 + 13 – 2 + 14 + 24 0 – 0.37
52 00 00 35.20 – 77 01 12.5 8.56 H 0.146 658 79 – 77.020 140 50 3.95 21.46 9.91 0.65 0.62 0.77 0.76 0.64 – 4 + 14 – 24 + 5 + 8 – 2 + 6 – 1 – 8 + 10 0 1.25
53 00 00 35.37 – 29 15 48.2 10.96 H 0.147 390 23 – 29.263 382 47 – 1.76 11.94 – 12.96 2.18 1.03 2.45 3.15 1.27 + 3 – 7 + 7 + 27 + 5 + 8 – 10 – 32 + 11 – 22 0 1.19
54 00 00 36.40 + 17 58 08.2 10.57 G 0.151 655 58 + 17.968 955 79 20.97 367.14 – 19.49 1.26 1.04 1.71 1.41 1.02 + 40 – 1 – 2 – 3 – 11 + 17 – 10 – 22 + 17 + 42 0 0.68
55 H 00 00 37.88 – 66 40 59.2 7.40 G 0.157 833 23 – 66.683 103 36 A 14.66 162.88 – 28.82 0.86 0.85 0.98 0.82 0.82 – 14 + 12 – 24 – 16 + 7 – 8 + 3 + 8 – 11 – 5 2 0.24

56 00 00 39.08 + 00 13 22.6 8.12 H 0.162 831 75 + 00.222 938 99 3.47 39.02 – 3.09 1.20 0.62 1.27 1.71 0.67 + 11 + 19 – 24 – 29 + 1 + 23 + 7 – 24 + 29 + 27 0 0.91
57 00 00 40.39 – 69 40 32.9 8.27 1 H 0.168 285 57 – 69.675 800 68 33.89 – 40.97 – 67.59 0.63 0.64 0.79 0.66 0.64 – 8 + 0 – 29 – 13 – 5 + 11 – 1 – 18 + 5 + 2 1 0.31
58 00 00 41.70 + 62 10 33.6 7.05 H 0.173 763 41 + 62.176 004 84 26.06 – 46.95 – 43.90 0.48 0.51 0.67 0.54 0.57 – 17 + 16 + 18 + 21 – 5 – 5 – 1 – 2 + 24 – 21 0 – 1.05
59 00 00 41.87 + 55 43 20.9 9.09 H 0.174 447 49 + 55.722 462 67 – 0.06 – 0.27 – 1.02 0.85 0.85 1.38 1.16 0.98 – 33 – 5 + 19 – 29 + 21 + 37 + 14 – 18 + 2 – 25 1 1.99
60 00 00 42.10 – 64 27 57.0 8.34 H 0.175 423 18 – 64.465 825 16 6.18 1.75 10.74 0.63 0.60 0.83 0.70 0.63 – 6 – 3 – 27 – 3 + 11 – 1 + 12 – 9 – 17 + 3 0 0.06

61 00 00 42.28 + 53 49 19.9 8.86 H 0.176 157 26 + 53.822 186 25 5.60 32.68 – 16.70 0.64 0.68 1.11 0.89 0.82 – 32 + 19 + 12 + 1 + 1 + 12 – 1 + 1 – 2 – 13 1 0.67
62 00 00 43.19 – 45 25 21.8 8.27 H 0.179 961 23 – 45.422 727 31 5.28 4.02 – 4.78 0.89 0.87 1.15 1.17 1.19 + 24 + 8 – 20 – 11 – 52 + 12 – 39 – 71 + 20 + 45 1 1.71
63 00 00 43.62 + 45 15 12.0 6.36 1 H 0.181 749 50 + 45.253 333 05 4.81 17.38 0.22 0.41 0.43 0.71 0.43 0.44 + 8 + 6 + 20 – 14 – 5 – 10 – 3 + 16 + 14 + 6 1 – 0.20
64 00 00 44.30 – 27 54 27.2 8.08 H 0.184 588 93 – 27.907 546 14 3.45 – 5.93 – 14.59 0.88 0.48 0.94 1.22 0.51 + 3 – 3 + 9 + 16 + 5 + 22 – 7 – 26 + 1 – 23 0 – 0.10
65 00 00 45.11 – 54 49 49.2 11.00 G 0.187 975 32 – 54.830 340 57 16.98 – 205.14 – 75.34 1.34 1.54 2.43 1.65 1.83 – 25 – 7 – 15 – 1 + 5 + 13 + 8 – 4 – 13 – 27 1 1.98

66 00 00 45.25 – 72 19 05.7 8.55 H 0.188 549 17 – 72.318 249 13 8.18 – 15.61 11.88 0.77 0.68 0.88 0.89 0.67 – 11 + 25 – 19 + 18 + 11 – 1 + 9 – 13 – 5 – 2 0 0.64
67 00 00 47.78 + 23 32 17.7 7.83 G 0.199 101 32 + 23.538 248 73 7.48 91.05 – 12.35 0.76 0.55 0.93 0.81 0.51 + 28 + 27 + 11 + 14 + 1 + 12 + 5 – 18 + 15 + 33 2 – 1.32
68 00 00 48.15 + 16 59 20.3 8.79 H 0.200 636 28 + 16.988 964 99 31.80 – 99.69 – 315.90 0.94 0.63 1.17 1.14 0.82 + 35 + 3 – 12 + 12 + 3 – 3 + 3 + 14 – 7 + 25 0 – 0.62
69 00 00 48.33 + 30 23 45.2 8.33 H 0.201 371 75 + 30.395 892 83 6.35 16.48 – 1.30 0.97 0.58 1.12 1.37 0.61 – 2 + 17 – 1 – 29 + 17 + 28 + 17 – 9 + 24 + 4 0 0.22
70 00 00 48.67 + 36 46 39.5 10.42 H 0.202 800 14 + 36.777 639 45 B 5.25 – 46.78 – 0.88 19.36 13.02 13.87 16.42 11.24 + 4 + 27 + 9 – 4 + 6 – 18 + 14 + 6 + 19 + 4 17 2.51

71 00 00 49.70 + 36 46 48.6 8.26 H 0.207 099 81 + 36.780 153 28 A 9.13 – 24.50 – 19.47 2.11 1.35 1.84 2.05 1.40 – 1 + 25 + 6 – 6 + 9 – 15 + 14 + 15 + 16 + 2 17 2.51
72 00 00 52.67 – 12 49 43.2 8.97 H 0.219 469 89 – 12.828 670 15 10.63 185.34 – 119.65 1.11 0.63 1.25 1.32 0.59 + 26 – 10 – 7 – 41 – 9 + 30 – 13 – 49 + 30 + 29 3 0.93
73 00 00 52.91 + 66 50 52.7 6.90 H 0.220 457 19 + 66.847 966 87 3.97 – 20.78 18.19 0.53 0.51 0.69 0.67 0.55 – 13 + 4 + 23 + 8 – 2 – 11 + 1 + 2 + 17 – 11 1 – 0.33
74 00 00 53.25 + 35 45 09.8 9.93 H 0.221 872 81 + 35.752 722 13 24.22 157.73 – 40.31 1.12 0.82 1.36 1.53 0.94 + 18 + 3 + 9 – 12 + 1 + 19 – 3 + 3 + 15 + 31 2 – 1.43
75 00 00 53.56 – 50 26 47.3 7.42 H 0.223 162 16 – 50.446 465 00 1.60 29.01 2.56 0.55 0.53 0.79 0.69 0.59 – 8 + 0 – 9 – 3 – 11 + 2 – 9 – 7 – 5 – 1 0 1.20

76 00 00 54.77 + 32 49 32.4 9.03 2 H 0.228 219 59 + 32.825 674 52 2.29 – 1.98 – 8.45 1.02 0.67 1.19 1.17 0.71 + 7 + 12 – 4 + 40 + 3 – 25 + 6 + 19 + 8 + 14 4 – 0.31
77 00 00 55.33 – 30 03 51.0 8.41 G 0.230 521 69 – 30.064 173 33 3.53 18.83 2.83 0.90 0.49 1.12 1.24 0.61 + 4 – 21 + 3 – 11 + 7 + 31 + 0 – 39 – 1 – 15 1 1.30
78 00 00 55.76 + 17 52 04.2 8.06 H 0.232 313 07 + 17.867 841 93 1.17 – 0.51 3.68 0.72 0.56 0.96 0.81 0.54 + 41 + 13 + 10 + 10 + 6 + 6 + 5 – 4 + 1 + 41 0 1.09
79 00 00 56.57 + 35 19 00.3 8.69 H 0.235 722 86 + 35.316 753 86 4.57 16.45 – 13.81 0.87 0.56 0.99 1.06 0.62 + 10 + 2 + 2 – 16 – 2 + 14 – 4 + 7 + 23 + 22 0 – 0.28
80 00 00 58.03 – 11 49 24.7 8.40 G 0.241 792 16 – 11.823 537 22 15.59 419.04 – 82.83 1.00 0.60 1.43 1.53 0.56 + 36 – 17 – 6 – 33 – 5 + 51 – 17 – 42 + 35 + 37 0 – 0.94

81 00 00 58.53 – 04 55 55.6 8.57 G 0.243 864 43 – 04.932 114 71 23.43 – 184.70 – 172.67 1.25 0.59 1.28 1.60 0.58 + 26 + 0 – 19 – 3 + 0 + 10 + 0 – 38 + 27 + 31 2 0.73
82 00 00 59.53 – 10 56 08.9 9.50 G 0.248 031 73 – 10.935 805 40 1.82 – 6.01 – 65.06 1.15 0.69 1.37 1.59 0.64 + 31 – 9 – 7 – 3 + 3 – 1 – 9 – 41 + 30 + 19 0 – 0.17
83 00 00 59.54 + 52 04 50.0 8.85 H 0.248 081 00 + 52.080 564 44 2.28 – 2.10 – 0.99 0.77 0.79 1.30 0.90 0.83 – 29 + 16 + 13 + 15 – 3 + 10 + 0 + 6 + 24 – 26 0 – 0.04
84 00 01 00.43 + 27 53 10.8 9.61 H 0.251 807 22 + 27.886 343 68 18.90 225.55 – 5.46 1.20 0.77 1.33 1.54 0.76 – 3 – 4 + 19 – 5 + 1 – 11 + 1 – 13 + 17 – 12 0 – 0.22
85 00 01 01.44 – 24 42 50.6 10.62 G 0.256 007 30 – 24.714 049 02 3.90 48.48 0.49 1.69 0.95 2.06 2.56 0.95 + 10 + 16 – 9 + 34 – 6 + 27 – 15 – 40 + 22 – 12 1 0.76

86 00 01 02.49 + 69 36 12.6 8.05 H 0.260 382 62 + 69.603 498 30 3.47 11.53 2.67 0.56 0.58 0.78 0.71 0.58 + 2 – 4 + 26 – 7 + 3 + 25 – 3 – 13 + 16 + 20 0 0.95
87 00 01 02.76 – 05 50 05.9 7.80 G 0.261 515 56 – 05.834 975 69 4.52 – 7.83 – 10.91 0.87 0.48 1.08 1.17 0.53 + 31 – 11 – 7 – 4 – 8 + 51 – 6 – 35 + 23 + 43 0 1.39
88 00 01 04.60 – 48 48 35.5 5.71 H 0.269 159 58 – 48.809 859 19 5.97 – 17.92 – 6.75 0.44 0.44 0.70 0.50 0.54 – 17 – 6 – 6 – 15 – 1 + 8 + 0 – 19 – 4 – 6 0 – 0.67
89 00 01 06.52 + 53 10 01.0 7.87 H 0.277 151 78 + 53.166 942 53 2.60 0.68 0.03 0.49 0.58 0.96 0.74 0.60 – 41 + 4 + 19 + 3 + 4 + 12 + 4 – 6 + 9 – 22 0 – 0.57
90 00 01 07.20 – 41 53 14.7 7.64 H 0.279 999 88 – 41.887 429 72 9.35 25.10 – 46.98 0.60 0.47 0.92 0.72 0.60 – 4 + 3 + 7 + 28 + 0 + 23 – 3 – 33 – 2 – 6 2 – 0.67

91 00 01 07.34 – 05 52 27.6 7.66 H 0.280 568 47 – 05.874 332 93 4.21 – 15.41 – 6.09 0.95 0.50 1.23 1.29 0.56 + 33 + 17 + 4 + 2 + 0 + 52 + 4 – 27 + 37 + 51 0 1.24
92 00 01 09.75 – 20 42 20.1 8.68 H 0.290 625 12 – 20.705 586 48 4.77 27.51 15.15 1.37 0.62 1.44 1.58 0.59 – 2 + 6 + 9 – 51 + 14 + 9 + 14 – 40 + 13 – 15 0 1.48
93 00 01 10.13 – 00 04 33.3 8.12 G 0.292 222 55 – 00.075 920 34 16.74 54.94 – 73.28 1.07 0.61 1.28 1.33 0.71 + 25 + 35 – 12 + 10 – 9 + 31 + 8 – 25 + 36 + 40 0 – 0.78
94 00 01 10.76 – 32 45 24.5 10.10 H 0.294 853 02 – 32.756 805 69 10.48 50.32 – 12.69 1.04 0.69 1.48 1.24 0.83 + 8 – 15 + 6 – 25 + 3 + 17 – 2 – 36 + 12 + 0 1 1.49
95 00 01 12.49 – 11 57 50.4 8.67 H 0.302 038 83 – 11.964 000 15 7.85 – 9.94 – 13.75 0.88 0.57 1.17 1.36 0.55 + 26 – 7 + 2 – 10 + 1 + 50 – 7 – 40 + 28 + 31 0 – 1.27

96 00 01 13.17 + 13 58 29.1 10.46 G 0.304 893 57 + 13.974 748 26 A 19.83 20.59 139.82 4.63 3.08 5.16 4.67 3.04 + 42 + 2 + 8 + 10 – 13 + 7 – 12 – 18 + 5 + 50 14 2.03
$97 00 01 13.76 – 21 24 14.6 9.48 H 0.307 333 62 – 21.404 045 27 5.52 18.34 1.21 1.39 0.68 1.74 2.05 0.69 + 6 + 23 + 26 – 31 + 12 – 8 + 12 – 29 + 3 – 23 0 0.58
$98 00 01 13.72 – 52 47 54.9 9.87 H 0.307 178 11 – 52.798 579 54 6.49 – 2.09 1.70 0.74 0.95 1.44 0.88 0.95 – 34 – 18 + 4 + 23 + 7 + 1 + 7 + 0 – 11 – 30 0 0.86

99 00 01 15.84 + 60 21 19.1 7.04 2 H 0.316 016 20 + 60.355 297 98 1.27 9.57 – 6.49 0.47 0.51 0.70 0.55 0.57 – 10 + 6 + 15 + 13 + 1 – 3 + 3 + 3 + 26 – 10 0 0.52
100 00 01 15.95 + 19 44 28.7 8.44 H 0.316 451 28 + 19.741 316 48 4.49 – 29.13 – 30.14 0.84 0.61 1.08 0.92 0.63 + 31 + 0 – 12 – 4 + 10 + 6 + 9 + 4 + 16 + 40 0 0.26

5 astrometric parameters
‣ estimated values and their standard errors: 

‣ Correlation between astrometric 
parameters of each star,

all 10 combinations

σα σδ σ� σµα∗ σµδ

α δ � µα∗ µδ

27

Covariances

Hipparcos vs Gaia catalogue



~50,000 books 
of astrometric data

+ radial velocities up to ~17 mag

2020

Hipparcos vs Gaia catalogue

5 books 
of astrometric data

1997
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     is a measured or derived quantity (e.g. parallax of a star):

Terminology

30

Often confusingly called ‘error’, ‘mean error’ 
or (slighly better) ‘standard error’, ‘RMS error’, etc.

I will use ‘standard uncertainty’ 
for the uncertainty of a Gaussian error distribution,

Observations are often influenced by many random processes 
approaching Gaussian error distribution (central limit theorem).

Random variability in measurement. 

Described by probability distribution 
characterized by e.g. mean, standard deviation, skewness etc.

uncertainty   ~known

error unknowne = x− xtrue

x



Terminology

31

If assumed zero leads to systematic errors.
These are difficult to determine by repeating the experiment 
(e.g. observing Castor while you should be observing Pollux)

Normally estimated quite well:
- by repeating (assuming identical experiments), 
- observation process knowledge (e.g. photons Poisson statistics).

Random variability in measurement. 

Nonzero mean in probability distribution.bias often unknown

Random variability in measurement. 

Described by probability distribution 
characterized by e.g. mean, standard deviation, skewness etc.

~known

     is a measured or derived quantity (e.g. parallax of a star):

error unknowne = x− xtrue

x

uncertainty   



Why we need to understand errors

32

1 2 3 4 5 6 7 8 9 10

va
lu

e

data point

Essential for interpreting data, examples:

proper motion of stars in cluster
Data points + standard uncertainty

Depending on the application uncertainties can be of crucial importance!

Compute velocity dispersion (excl. 4)

If the latter two are of similar size, the data 
uncertainties need to be very well known.

σ2
computed = σ2

intrinsic + σ2
data

Determine membership

Outcome does not critically depend on 
uncertainty (e.g. +/- 10% does not change result)

y =
µi− < µ >excluding i

σdiff
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Random errors in Gaia catalogue

38

Random variability is dominated by photon fluctuations:
‣ raw photo-electron accurately follow Poisson statistics,

‣ so measurements are (largely) unbiassed and uncorrelated,

‣ number of electrons per pixel is >>10 (even for G=20) 
it is similar to a Gaussian distribution sampled at discrete points.

Measurement process includes effects like:
‣ diffraction of light through telescope,

‣ effective integration time,

‣ motion of the satellite during integration,

‣ CCD readout noise,

‣ CCD charge transfer inefficiencies (due to radiation damage).



In absence of radiation damage:
‣ the observation times estimated by the centroiding process

will also be Gaussian, unbiassed, and uncorrelated,

‣ therefore, to characterize astrometric errors 
we only need to study error propagation through AGIS!

Random errors in Gaia catalogue

38

Random variability is dominated by photon fluctuations:
‣ raw photo-electron accurately follow Poisson statistics,

‣ so measurements are (largely) unbiassed and uncorrelated,

‣ number of electrons per pixel is >>10 (even for G=20) 
it is similar to a Gaussian distribution sampled at discrete points.

Measurement process includes effects like:
‣ diffraction of light through telescope,

‣ effective integration time,

‣ motion of the satellite during integration,

‣ CCD readout noise,

‣ CCD charge transfer inefficiencies (due to radiation damage).
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1.0 deg binned spatial correlations (17 datasets)

AlphaStar Delta Parallax MuAlphaStar MuDelta corr. estimate (from FOV overlap)
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1.0 deg binned spatial correlations (25 datasets)

AlphaStar Delta Parallax MuAlphaStar MuDelta corr. estimate (from FOV overlap)
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1.0 deg binned spatial correlations (759 datasets)
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0.5 deg binned spatial correlations (759 datasets)
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0.5 deg binned spatial correlations (112 datasets)
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0.5 deg binned spatial correlations (49 datasets)
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1.0 deg binned spatial correlations (759 datasets)
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1.0 deg binned spatial correlations (759 datasets)
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1.0 deg binned spatial correlations (759 datasets)
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1.0 deg binned spatial correlations (759 datasets)
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0.5 deg binned spatial correlations (112 datasets)
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0.5 deg binned spatial correlations (759 datasets)
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Equation (5) can be written compactly as

Mx � h (7)

where M is a very sparse matrix. This system is over-
determined: there are (many) more observation equations than
unknowns. Due to measurement errors there does not exist a so-
lution that simultaneously satisfies all the equations; we indicate
this by using ‘�’ instead of an equality in Eqs. (5) and (7). The
least-squares solution minimises the 2-norm of the post-fit resid-
ual vector, �h − Mx�, and is classically found by solving the
normal equations

M�Mx = M�h . (8)
It is well known that, under the given assumptions, the least-
squares estimate x̂ = (M�M)−1 M�h is unbiased, and that its co-
variance matrix is given by (M�M)−1. Since the objective of this
paper is to characterise the astrometric solution in terms of its
covariance matrix, we need to concentrate on the normal matrix
N = M�M and its inverse. The basic problem is that these ma-
trices are so large that it is not feasible to calculate the inverse
directly. From Eq. (5) we have

N =




S�1S1 0 · · · 0 S�1 A1
0 S�2S2 · · · 0 S�2 A2
...

...
. . .

...
...

0 0 · · · S�nSn S�n An

A�1S1 A�2S2 · · · A�nSn
�

i A�i Ai




=

� P R
R� Q

�
, (9)

where the lines divide N into the sub-matrices P, R, and Q, the
structures of which are outlined below.

In the following we use indices i, j, and k (ranging from 1
to N) to denote the different primary sources, while p, q, and r
are reserved for the different attitude parameters (in the range
from 1 to P) and l for the observations. As before, l ∈ i means an
observation of source i, but we now introduce also l ∈ p for an
observation depending on ap (the attitude parameter with index
p), that is an observation for which ∂ fl/∂ap � 0. Similarly, l ∈
i ∩ p indicates an observation of source i depending on ap, and
l ∈ p ∩ q an observation depending on both ap and aq; finally,
p ∈ i means that there is at least one observation of source i
depending on ap. With this slight abuse of indices and notations
from set theory we can write the relevant sums in a concise way
which is quite easy to interpret, keeping in mind that i always
refers to a source, p to an attitude parameter, and so on. (See
Appendix A for more precise definitions.)

The source normal matrix P is a block-diagonal matrix of
size 5N × 5N, with blocks Pi of size 5 × 5 (the number of as-
trometric parameters per source) along the main diagonal. From
Eqs. (6) and (9) we find

Pi =
�

l ∈ i

∂ fl
∂si

∂ fl
∂s�i

wl , (10)

where wl = σ−2
l is the weight of observation l. Provided that the

source is sufficiently observed (which is a condition for primary
sources) Pi is positive definite, and so is P. Because of the block-
diagonal structure of P its inverse is also block-diagonal with
P−1

i along the diagonal; thus P−1 is trivially computed.
The structure of the P × P matrix Q depends on the attitude

parametrisation used (see Sect. 4) but is typically band-diagonal.
The general expression for the matrix element is

Qpq =
�

l ∈p∩ q

∂ fl
∂ap

∂ fl
∂aq

wl , (11)

which is 0 if no observation depends on both ap and aq.

The off-diagonal sub-matrices R and R� are very sparse but
have a complicated structure due to the scanning law. Each S�i Ai
in Eq. (9) consists of a row of P blocks of size 5 × 1; for source
i the block in column p is given by

Rip ≡ (S�i Ai)p =
�

l ∈ i∩ p

∂ fl
∂si

∂ fl
∂ap

wl (12)

which is 0 if no observation of source i depends on ap. From
Eq. (12) it is clear that R is responsible for the coupling between
source and attitude parameters. Because a given source is ob-
served quite infrequently, the matrix is typically very sparse.

3.2. Rank deficiency of the normal equations

Thanks to the scanning law of Gaia and the choice of primary
sources and attitude parametrisation, it follows that the diago-
nal sub-matrices P and Q are positive definite. The complete
normal matrix is however singular, having a 6-dimensional null
space due to the (internally) undefined orientation and spin of
the reference system in which the source and attitude param-
eters are expressed. This means that C = N−1 does not exist
and that the normal equations have an infinitude of solutions.
Notwithstanding this predicament, the normal equations can be
solved by iteration, as is done in AGIS, and the only correc-
tive action needed is to modify the null-space component of the
converged solution, through a rigid-body rotation, to agree with
the (externally defined) reference frame (Lindegren et al. 2012,
Sect. 6.1). However, even without such external data it is pos-
sible to produce a pseudo-solution by aligning the converged
AGIS solution with the initial catalogue values used to start up
the iterations. This projects the solution (in terms of corrections
to the initial values) into the orthogonal complement of the null
space.

For the characterisation of the astrometric errors it is in prin-
ciple desirable to use C = N†, the pseudo-inverse of the normal
matrix. This means that C does not include the uncertainty of
the reference frame itself. Indeed, the latter may be several times
larger than the positional uncertainties of the most precise stars,
due to the scarcity and faintness of extragalactic objects suitable
for linking with the VLBI frame (Bourda et al. 2008). On the
other hand, since Gaia will in effect define the optical reference
frame for the foreseeable future, this uncertainty is largely ar-
bitrary and irrelevant for most purposes. Thus it is better not to
include it in C, which implies using the pseudo-inverse, and to
characterise the frame errors separately.

Although the singularity of N formally invalidates the se-
ries expansion of the inverse derived in the next section, our
conjecture is that the expansion converges and provides a use-
ful approximation of C. In order to obtain the pseudo-inverse,
it may be necessary to project the rows and columns of C into
the orthogonal complement of the null space, but probably this
has almost negligible impact on the values, thanks to the very
large number of parameters. Ultimately, the accuracy of the ap-
proximation will be ascertained by numerical experiments, as
reported in Paper II. For the subsequent development the singu-
larity of N is ignored.
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3.3. Series expansion of the covariance matrix

The complete covariance matrix for the least squares problem of

Eq. (8) is C = N−1
, which can be written as

C ≡
� U W
W� V

�
=

� P R
R� Q

�−1

, (13)

using the same block partition as in the normal matrix of Eq. (9),

an important difference being that the covariance matrix is not

sparse, but typically full. Block U gives us the covariances of the

astrometric parameters of all the sources, V contains the covari-

ances of the attitude parameters, and W the cross-covariances

between the source and attitude parameters. We are mainly inter-

ested in U, although for some purposes V may also be required

(e.g., to get the covariances for secondary sources, which depend

on the attitude parameters but do not contribute to the estimation

of the attitude).

Assuming that the inverses exist, the following identities are

easily verified by direct substitution:

U = P−1 + P−1RVR�P−1 , (14)

V =
�
Q − R�P−1R

�−1

, (15)

W = −P−1RV . (16)

Equation (14) has a very simple and clear interpretation. The

first term, P−1
, is the covariance of the source parameters in the

absence of attitude errors (i.e., for V = 0). The second term is

then the contribution due to the uncertainty of the attitude (since

in reality V > 0). Part of the problem is therefore to estimate

V. By permutation of the sub-matrices, the following alternative

expressions are obtained:

U =
�
P − RQ−1R�

�−1

, (17)

V = Q−1 + Q−1R�URQ−1 , (18)

W = −URQ−1 . (19)

Here, V allows a similar interpretation: the first term, Q−1
, is the

covariance of the attitude errors obtained by fitting the attitude

model to the noisy observations, using error-free source param-

eters (i.e., for U = 0). The second term is the contribution from

the uncertainty of the source parameters. Inserting Eq. (18) into

(14) and expanding recursively gives

U = P−1 +

P−1RQ−1R�P−1 +

P−1RQ−1R�P−1RQ−1R�P−1 +

P−1RQ−1R�P−1RQ−1R�P−1RQ−1R�P−1 + · · ·
≡ U(0) + U(1) + U(2) + U(3) + · · · (20)

Successive terms have a clear physical interpretation in terms

of the propagation of the observational errors alternately from

the sources to the attitude, and from the attitude to the sources.

For example, U(0)
is the covariance of the source parameters due

to the observation noise but with perfect attitude; U(1)
the addi-

tional uncertainty from the attitude errors due to the noisy obser-

vations but assuming true source parameters; U(2)
the additional

uncertainty due to the source errors obtained with perfect atti-

tude propagating through the attitude back to the sources; and so

on. A corresponding expansion can be made for the attitude:

V = Q−1 +

Q−1R�P−1RQ−1 +

Q−1R�P−1RQ−1R�P−1RQ−1 +

Q−1R�P−1RQ−1R�P−1RQ−1R�P−1RQ−1 + · · ·
≡ V(0) + V(1) + V(2) + V(3) + · · · (21)

in which successive terms can be similarly interpreted.

The terms in Eqs. (20) and (21) follow the simple recursions
2

U(0) = P−1
; U(α) = XU(α−1) , α = 1, 2, . . . (22)

V(0) = Q−1
; V(α) = YV(α−1) , α = 1, 2, . . . (23)

where

X = P−1RQ−1R� , (24)

Y = Q−1R�P−1R . (25)

X is a matrix consisting of N ×N blocks of size 5× 5; the (i, j)th
block is

Xi j = P−1

i

�

p ∈ i

�

q ∈ j

Rip(Q−1
)pq(R jq)

� . (26)

The corresponding expression for the (scalar) elements of Y is

Ypq =
�

r

(Q−1
)pr

�

i ∈ r∩ q

(Rir)
�P−1

i Riq . (27)

Now consider the case that Q−1
is a full matrix (which would

happen, for example, if the attitude is modelled by a single con-

tinuous spline over the whole mission). Then Xi j is clearly non-

zero for any combination of i and j. From Eq. (22) we have

U(α)

ik =
�

j

Xi jU(α−1)

jk ⇒ U(1)

ik = XikU(0)

kk , (28)

so that in this case already U(1)
is a full matrix. Since Xik involves

a large number of elements from Q−1
, it is clear that the computa-

tion of a single block in U(1)
is already a heavy task. Considering

the next term U(2)
, we see from the left part of Eq. (28) that

the computation of the single block U(2)

ik requires knowledge of

U(1)

jk for every j, making it utterly impracticable. Similar consid-

erations apply to the recursion of the attitude covariance using

Eq. (27). To proceed, we clearly need to introduce some radical

simplifications.

4. The kinematographic approximation

4.1. Assumptions

The attitude parameters define the spatial orientation of the in-

strument as a function of time. For Gaia the attitude will be

modelled by quaternions whose components are fitted by cubic

splines on a (more or less regular) knot sequence with knot sep-

arations of ∼5–30 s (Lindegren et al. 2012, Sect. 3.3). Instead

of the non-intuitive four-component quaternions we can think of

the attitude as being represented by three angles: one describ-

ing the AL angle (i.e., the rotational phase around the spin axis),

and two describing the AC components of the attitude (i.e., the

direction of the spin axis). To first order, however, is is only the

errors in the AL direction that matter (see Lindegren & Bastian

2011), and as discussed in Sect. 2.1 we only consider the AL

2
Alternatively, U(α) = U(α−1) X�, etc.

6
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!"#$%&$'(")$*&(+,$-'./01+%2"'$3'*,4'56768

9(:$'!";'767<'$,$1$"3&''='76>'?$%*/@3$';'233$%,@'(1A%*B3(B*+,$-' 43

Covariance expansion model

B. Holl & L. Lindegren: Error characterization of the Gaia astrometric solution. I

3.3. Series expansion of the covariance matrix

The complete covariance matrix for the least squares problem of

Eq. (8) is C = N−1
, which can be written as

C ≡
� U W
W� V

�
=

� P R
R� Q

�−1

, (13)

using the same block partition as in the normal matrix of Eq. (9),

an important difference being that the covariance matrix is not

sparse, but typically full. Block U gives us the covariances of the

astrometric parameters of all the sources, V contains the covari-

ances of the attitude parameters, and W the cross-covariances

between the source and attitude parameters. We are mainly inter-

ested in U, although for some purposes V may also be required

(e.g., to get the covariances for secondary sources, which depend

on the attitude parameters but do not contribute to the estimation

of the attitude).

Assuming that the inverses exist, the following identities are

easily verified by direct substitution:

U = P−1 + P−1RVR�P−1 , (14)

V =
�
Q − R�P−1R

�−1

, (15)

W = −P−1RV . (16)

Equation (14) has a very simple and clear interpretation. The

first term, P−1
, is the covariance of the source parameters in the

absence of attitude errors (i.e., for V = 0). The second term is

then the contribution due to the uncertainty of the attitude (since

in reality V > 0). Part of the problem is therefore to estimate

V. By permutation of the sub-matrices, the following alternative

expressions are obtained:

U =
�
P − RQ−1R�

�−1

, (17)

V = Q−1 + Q−1R�URQ−1 , (18)

W = −URQ−1 . (19)

Here, V allows a similar interpretation: the first term, Q−1
, is the

covariance of the attitude errors obtained by fitting the attitude

model to the noisy observations, using error-free source param-

eters (i.e., for U = 0). The second term is the contribution from

the uncertainty of the source parameters. Inserting Eq. (18) into

(14) and expanding recursively gives

U = P−1 +

P−1RQ−1R�P−1 +

P−1RQ−1R�P−1RQ−1R�P−1 +

P−1RQ−1R�P−1RQ−1R�P−1RQ−1R�P−1 + · · ·
≡ U(0) + U(1) + U(2) + U(3) + · · · (20)

Successive terms have a clear physical interpretation in terms

of the propagation of the observational errors alternately from

the sources to the attitude, and from the attitude to the sources.

For example, U(0)
is the covariance of the source parameters due

to the observation noise but with perfect attitude; U(1)
the addi-

tional uncertainty from the attitude errors due to the noisy obser-

vations but assuming true source parameters; U(2)
the additional

uncertainty due to the source errors obtained with perfect atti-

tude propagating through the attitude back to the sources; and so

on. A corresponding expansion can be made for the attitude:

V = Q−1 +

Q−1R�P−1RQ−1 +

Q−1R�P−1RQ−1R�P−1RQ−1 +

Q−1R�P−1RQ−1R�P−1RQ−1R�P−1RQ−1 + · · ·
≡ V(0) + V(1) + V(2) + V(3) + · · · (21)

in which successive terms can be similarly interpreted.

The terms in Eqs. (20) and (21) follow the simple recursions
2

U(0) = P−1
; U(α) = XU(α−1) , α = 1, 2, . . . (22)

V(0) = Q−1
; V(α) = YV(α−1) , α = 1, 2, . . . (23)

where

X = P−1RQ−1R� , (24)

Y = Q−1R�P−1R . (25)

X is a matrix consisting of N ×N blocks of size 5× 5; the (i, j)th
block is

Xi j = P−1

i

�

p ∈ i

�

q ∈ j

Rip(Q−1
)pq(R jq)

� . (26)

The corresponding expression for the (scalar) elements of Y is

Ypq =
�

r

(Q−1
)pr

�

i ∈ r∩ q

(Rir)
�P−1

i Riq . (27)

Now consider the case that Q−1
is a full matrix (which would

happen, for example, if the attitude is modelled by a single con-

tinuous spline over the whole mission). Then Xi j is clearly non-

zero for any combination of i and j. From Eq. (22) we have

U(α)

ik =
�

j

Xi jU(α−1)

jk ⇒ U(1)

ik = XikU(0)

kk , (28)

so that in this case already U(1)
is a full matrix. Since Xik involves

a large number of elements from Q−1
, it is clear that the computa-

tion of a single block in U(1)
is already a heavy task. Considering

the next term U(2)
, we see from the left part of Eq. (28) that

the computation of the single block U(2)

ik requires knowledge of

U(1)

jk for every j, making it utterly impracticable. Similar consid-

erations apply to the recursion of the attitude covariance using

Eq. (27). To proceed, we clearly need to introduce some radical

simplifications.

4. The kinematographic approximation

4.1. Assumptions

The attitude parameters define the spatial orientation of the in-

strument as a function of time. For Gaia the attitude will be

modelled by quaternions whose components are fitted by cubic

splines on a (more or less regular) knot sequence with knot sep-

arations of ∼5–30 s (Lindegren et al. 2012, Sect. 3.3). Instead

of the non-intuitive four-component quaternions we can think of

the attitude as being represented by three angles: one describ-

ing the AL angle (i.e., the rotational phase around the spin axis),

and two describing the AC components of the attitude (i.e., the

direction of the spin axis). To first order, however, is is only the

errors in the AL direction that matter (see Lindegren & Bastian

2011), and as discussed in Sect. 2.1 we only consider the AL
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Equation (5) can be written compactly as

Mx � h (7)

where M is a very sparse matrix. This system is over-
determined: there are (many) more observation equations than
unknowns. Due to measurement errors there does not exist a so-
lution that simultaneously satisfies all the equations; we indicate
this by using ‘�’ instead of an equality in Eqs. (5) and (7). The
least-squares solution minimises the 2-norm of the post-fit resid-
ual vector, �h − Mx�, and is classically found by solving the
normal equations

M�Mx = M�h . (8)
It is well known that, under the given assumptions, the least-
squares estimate x̂ = (M�M)−1 M�h is unbiased, and that its co-
variance matrix is given by (M�M)−1. Since the objective of this
paper is to characterise the astrometric solution in terms of its
covariance matrix, we need to concentrate on the normal matrix
N = M�M and its inverse. The basic problem is that these ma-
trices are so large that it is not feasible to calculate the inverse
directly. From Eq. (5) we have
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. . .
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...

0 0 · · · S�nSn S�n An

A�1S1 A�2S2 · · · A�nSn
�

i A�i Ai




=

� P R
R� Q

�
, (9)

where the lines divide N into the sub-matrices P, R, and Q, the
structures of which are outlined below.

In the following we use indices i, j, and k (ranging from 1
to N) to denote the different primary sources, while p, q, and r
are reserved for the different attitude parameters (in the range
from 1 to P) and l for the observations. As before, l ∈ i means an
observation of source i, but we now introduce also l ∈ p for an
observation depending on ap (the attitude parameter with index
p), that is an observation for which ∂ fl/∂ap � 0. Similarly, l ∈
i ∩ p indicates an observation of source i depending on ap, and
l ∈ p ∩ q an observation depending on both ap and aq; finally,
p ∈ i means that there is at least one observation of source i
depending on ap. With this slight abuse of indices and notations
from set theory we can write the relevant sums in a concise way
which is quite easy to interpret, keeping in mind that i always
refers to a source, p to an attitude parameter, and so on. (See
Appendix A for more precise definitions.)

The source normal matrix P is a block-diagonal matrix of
size 5N × 5N, with blocks Pi of size 5 × 5 (the number of as-
trometric parameters per source) along the main diagonal. From
Eqs. (6) and (9) we find

Pi =
�

l ∈ i

∂ fl
∂si

∂ fl
∂s�i

wl , (10)

where wl = σ−2
l is the weight of observation l. Provided that the

source is sufficiently observed (which is a condition for primary
sources) Pi is positive definite, and so is P. Because of the block-
diagonal structure of P its inverse is also block-diagonal with
P−1

i along the diagonal; thus P−1 is trivially computed.
The structure of the P × P matrix Q depends on the attitude

parametrisation used (see Sect. 4) but is typically band-diagonal.
The general expression for the matrix element is

Qpq =
�

l ∈p∩ q

∂ fl
∂ap

∂ fl
∂aq

wl , (11)

which is 0 if no observation depends on both ap and aq.

The off-diagonal sub-matrices R and R� are very sparse but
have a complicated structure due to the scanning law. Each S�i Ai
in Eq. (9) consists of a row of P blocks of size 5 × 1; for source
i the block in column p is given by

Rip ≡ (S�i Ai)p =
�

l ∈ i∩ p

∂ fl
∂si

∂ fl
∂ap

wl (12)

which is 0 if no observation of source i depends on ap. From
Eq. (12) it is clear that R is responsible for the coupling between
source and attitude parameters. Because a given source is ob-
served quite infrequently, the matrix is typically very sparse.

3.2. Rank deficiency of the normal equations

Thanks to the scanning law of Gaia and the choice of primary
sources and attitude parametrisation, it follows that the diago-
nal sub-matrices P and Q are positive definite. The complete
normal matrix is however singular, having a 6-dimensional null
space due to the (internally) undefined orientation and spin of
the reference system in which the source and attitude param-
eters are expressed. This means that C = N−1 does not exist
and that the normal equations have an infinitude of solutions.
Notwithstanding this predicament, the normal equations can be
solved by iteration, as is done in AGIS, and the only correc-
tive action needed is to modify the null-space component of the
converged solution, through a rigid-body rotation, to agree with
the (externally defined) reference frame (Lindegren et al. 2012,
Sect. 6.1). However, even without such external data it is pos-
sible to produce a pseudo-solution by aligning the converged
AGIS solution with the initial catalogue values used to start up
the iterations. This projects the solution (in terms of corrections
to the initial values) into the orthogonal complement of the null
space.

For the characterisation of the astrometric errors it is in prin-
ciple desirable to use C = N†, the pseudo-inverse of the normal
matrix. This means that C does not include the uncertainty of
the reference frame itself. Indeed, the latter may be several times
larger than the positional uncertainties of the most precise stars,
due to the scarcity and faintness of extragalactic objects suitable
for linking with the VLBI frame (Bourda et al. 2008). On the
other hand, since Gaia will in effect define the optical reference
frame for the foreseeable future, this uncertainty is largely ar-
bitrary and irrelevant for most purposes. Thus it is better not to
include it in C, which implies using the pseudo-inverse, and to
characterise the frame errors separately.

Although the singularity of N formally invalidates the se-
ries expansion of the inverse derived in the next section, our
conjecture is that the expansion converges and provides a use-
ful approximation of C. In order to obtain the pseudo-inverse,
it may be necessary to project the rows and columns of C into
the orthogonal complement of the null space, but probably this
has almost negligible impact on the values, thanks to the very
large number of parameters. Ultimately, the accuracy of the ap-
proximation will be ascertained by numerical experiments, as
reported in Paper II. For the subsequent development the singu-
larity of N is ignored.
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3.3. Series expansion of the covariance matrix

The complete covariance matrix for the least squares problem of

Eq. (8) is C = N−1
, which can be written as

C ≡
� U W
W� V

�
=

� P R
R� Q

�−1

, (13)

using the same block partition as in the normal matrix of Eq. (9),

an important difference being that the covariance matrix is not

sparse, but typically full. Block U gives us the covariances of the

astrometric parameters of all the sources, V contains the covari-

ances of the attitude parameters, and W the cross-covariances

between the source and attitude parameters. We are mainly inter-

ested in U, although for some purposes V may also be required

(e.g., to get the covariances for secondary sources, which depend

on the attitude parameters but do not contribute to the estimation

of the attitude).

Assuming that the inverses exist, the following identities are

easily verified by direct substitution:

U = P−1 + P−1RVR�P−1 , (14)

V =
�
Q − R�P−1R

�−1

, (15)

W = −P−1RV . (16)

Equation (14) has a very simple and clear interpretation. The

first term, P−1
, is the covariance of the source parameters in the

absence of attitude errors (i.e., for V = 0). The second term is

then the contribution due to the uncertainty of the attitude (since

in reality V > 0). Part of the problem is therefore to estimate

V. By permutation of the sub-matrices, the following alternative

expressions are obtained:

U =
�
P − RQ−1R�

�−1

, (17)

V = Q−1 + Q−1R�URQ−1 , (18)

W = −URQ−1 . (19)

Here, V allows a similar interpretation: the first term, Q−1
, is the

covariance of the attitude errors obtained by fitting the attitude

model to the noisy observations, using error-free source param-

eters (i.e., for U = 0). The second term is the contribution from

the uncertainty of the source parameters. Inserting Eq. (18) into

(14) and expanding recursively gives

U = P−1 +

P−1RQ−1R�P−1 +

P−1RQ−1R�P−1RQ−1R�P−1 +

P−1RQ−1R�P−1RQ−1R�P−1RQ−1R�P−1 + · · ·
≡ U(0) + U(1) + U(2) + U(3) + · · · (20)

Successive terms have a clear physical interpretation in terms

of the propagation of the observational errors alternately from

the sources to the attitude, and from the attitude to the sources.

For example, U(0)
is the covariance of the source parameters due

to the observation noise but with perfect attitude; U(1)
the addi-

tional uncertainty from the attitude errors due to the noisy obser-

vations but assuming true source parameters; U(2)
the additional

uncertainty due to the source errors obtained with perfect atti-

tude propagating through the attitude back to the sources; and so

on. A corresponding expansion can be made for the attitude:

V = Q−1 +

Q−1R�P−1RQ−1 +

Q−1R�P−1RQ−1R�P−1RQ−1 +

Q−1R�P−1RQ−1R�P−1RQ−1R�P−1RQ−1 + · · ·
≡ V(0) + V(1) + V(2) + V(3) + · · · (21)

in which successive terms can be similarly interpreted.

The terms in Eqs. (20) and (21) follow the simple recursions
2

U(0) = P−1
; U(α) = XU(α−1) , α = 1, 2, . . . (22)

V(0) = Q−1
; V(α) = YV(α−1) , α = 1, 2, . . . (23)

where

X = P−1RQ−1R� , (24)

Y = Q−1R�P−1R . (25)

X is a matrix consisting of N ×N blocks of size 5× 5; the (i, j)th
block is

Xi j = P−1

i

�

p ∈ i

�

q ∈ j

Rip(Q−1
)pq(R jq)

� . (26)

The corresponding expression for the (scalar) elements of Y is

Ypq =
�

r

(Q−1
)pr

�

i ∈ r∩ q

(Rir)
�P−1

i Riq . (27)

Now consider the case that Q−1
is a full matrix (which would

happen, for example, if the attitude is modelled by a single con-

tinuous spline over the whole mission). Then Xi j is clearly non-

zero for any combination of i and j. From Eq. (22) we have

U(α)

ik =
�

j

Xi jU(α−1)

jk ⇒ U(1)

ik = XikU(0)

kk , (28)

so that in this case already U(1)
is a full matrix. Since Xik involves

a large number of elements from Q−1
, it is clear that the computa-

tion of a single block in U(1)
is already a heavy task. Considering

the next term U(2)
, we see from the left part of Eq. (28) that

the computation of the single block U(2)

ik requires knowledge of

U(1)

jk for every j, making it utterly impracticable. Similar consid-

erations apply to the recursion of the attitude covariance using

Eq. (27). To proceed, we clearly need to introduce some radical

simplifications.

4. The kinematographic approximation

4.1. Assumptions

The attitude parameters define the spatial orientation of the in-

strument as a function of time. For Gaia the attitude will be

modelled by quaternions whose components are fitted by cubic

splines on a (more or less regular) knot sequence with knot sep-

arations of ∼5–30 s (Lindegren et al. 2012, Sect. 3.3). Instead

of the non-intuitive four-component quaternions we can think of

the attitude as being represented by three angles: one describ-

ing the AL angle (i.e., the rotational phase around the spin axis),

and two describing the AC components of the attitude (i.e., the

direction of the spin axis). To first order, however, is is only the

errors in the AL direction that matter (see Lindegren & Bastian

2011), and as discussed in Sect. 2.1 we only consider the AL

2
Alternatively, U(α) = U(α−1) X�, etc.
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, which can be written as

C ≡
� U W
W� V
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=

� P R
R� Q
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, (13)

using the same block partition as in the normal matrix of Eq. (9),

an important difference being that the covariance matrix is not

sparse, but typically full. Block U gives us the covariances of the

astrometric parameters of all the sources, V contains the covari-

ances of the attitude parameters, and W the cross-covariances

between the source and attitude parameters. We are mainly inter-

ested in U, although for some purposes V may also be required

(e.g., to get the covariances for secondary sources, which depend

on the attitude parameters but do not contribute to the estimation

of the attitude).

Assuming that the inverses exist, the following identities are

easily verified by direct substitution:

U = P−1 + P−1RVR�P−1 , (14)

V =
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Q − R�P−1R

�−1

, (15)
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Equation (14) has a very simple and clear interpretation. The
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, is the covariance of the source parameters in the

absence of attitude errors (i.e., for V = 0). The second term is

then the contribution due to the uncertainty of the attitude (since

in reality V > 0). Part of the problem is therefore to estimate

V. By permutation of the sub-matrices, the following alternative
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U =
�
P − RQ−1R�

�−1

, (17)

V = Q−1 + Q−1R�URQ−1 , (18)

W = −URQ−1 . (19)

Here, V allows a similar interpretation: the first term, Q−1
, is the

covariance of the attitude errors obtained by fitting the attitude

model to the noisy observations, using error-free source param-

eters (i.e., for U = 0). The second term is the contribution from

the uncertainty of the source parameters. Inserting Eq. (18) into

(14) and expanding recursively gives
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P−1RQ−1R�P−1RQ−1R�P−1 +

P−1RQ−1R�P−1RQ−1R�P−1RQ−1R�P−1 + · · ·
≡ U(0) + U(1) + U(2) + U(3) + · · · (20)

Successive terms have a clear physical interpretation in terms

of the propagation of the observational errors alternately from

the sources to the attitude, and from the attitude to the sources.

For example, U(0)
is the covariance of the source parameters due

to the observation noise but with perfect attitude; U(1)
the addi-

tional uncertainty from the attitude errors due to the noisy obser-

vations but assuming true source parameters; U(2)
the additional

uncertainty due to the source errors obtained with perfect atti-

tude propagating through the attitude back to the sources; and so

on. A corresponding expansion can be made for the attitude:

V = Q−1 +
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The corresponding expression for the (scalar) elements of Y is
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Now consider the case that Q−1
is a full matrix (which would

happen, for example, if the attitude is modelled by a single con-

tinuous spline over the whole mission). Then Xi j is clearly non-

zero for any combination of i and j. From Eq. (22) we have
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kk , (28)

so that in this case already U(1)
is a full matrix. Since Xik involves

a large number of elements from Q−1
, it is clear that the computa-

tion of a single block in U(1)
is already a heavy task. Considering

the next term U(2)
, we see from the left part of Eq. (28) that

the computation of the single block U(2)

ik requires knowledge of

U(1)

jk for every j, making it utterly impracticable. Similar consid-

erations apply to the recursion of the attitude covariance using

Eq. (27). To proceed, we clearly need to introduce some radical

simplifications.
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strument as a function of time. For Gaia the attitude will be

modelled by quaternions whose components are fitted by cubic

splines on a (more or less regular) knot sequence with knot sep-

arations of ∼5–30 s (Lindegren et al. 2012, Sect. 3.3). Instead

of the non-intuitive four-component quaternions we can think of

the attitude as being represented by three angles: one describ-

ing the AL angle (i.e., the rotational phase around the spin axis),

and two describing the AC components of the attitude (i.e., the

direction of the spin axis). To first order, however, is is only the
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3.3. Series expansion of the covariance matrix

The complete covariance matrix for the least squares problem of

Eq. (8) is C = N−1
, which can be written as

C ≡
� U W
W� V

�
=

� P R
R� Q

�−1

, (13)

using the same block partition as in the normal matrix of Eq. (9),

an important difference being that the covariance matrix is not

sparse, but typically full. Block U gives us the covariances of the

astrometric parameters of all the sources, V contains the covari-

ances of the attitude parameters, and W the cross-covariances

between the source and attitude parameters. We are mainly inter-

ested in U, although for some purposes V may also be required

(e.g., to get the covariances for secondary sources, which depend

on the attitude parameters but do not contribute to the estimation

of the attitude).

Assuming that the inverses exist, the following identities are

easily verified by direct substitution:

U = P−1 + P−1RVR�P−1 , (14)

V =
�
Q − R�P−1R

�−1

, (15)

W = −P−1RV . (16)

Equation (14) has a very simple and clear interpretation. The

first term, P−1
, is the covariance of the source parameters in the

absence of attitude errors (i.e., for V = 0). The second term is

then the contribution due to the uncertainty of the attitude (since

in reality V > 0). Part of the problem is therefore to estimate

V. By permutation of the sub-matrices, the following alternative

expressions are obtained:

U =
�
P − RQ−1R�

�−1

, (17)

V = Q−1 + Q−1R�URQ−1 , (18)

W = −URQ−1 . (19)

Here, V allows a similar interpretation: the first term, Q−1
, is the

covariance of the attitude errors obtained by fitting the attitude

model to the noisy observations, using error-free source param-

eters (i.e., for U = 0). The second term is the contribution from

the uncertainty of the source parameters. Inserting Eq. (18) into

(14) and expanding recursively gives

U = P−1 +

P−1RQ−1R�P−1 +

P−1RQ−1R�P−1RQ−1R�P−1 +

P−1RQ−1R�P−1RQ−1R�P−1RQ−1R�P−1 + · · ·
≡ U(0) + U(1) + U(2) + U(3) + · · · (20)

Successive terms have a clear physical interpretation in terms

of the propagation of the observational errors alternately from

the sources to the attitude, and from the attitude to the sources.

For example, U(0)
is the covariance of the source parameters due

to the observation noise but with perfect attitude; U(1)
the addi-

tional uncertainty from the attitude errors due to the noisy obser-

vations but assuming true source parameters; U(2)
the additional

uncertainty due to the source errors obtained with perfect atti-

tude propagating through the attitude back to the sources; and so

on. A corresponding expansion can be made for the attitude:

V = Q−1 +

Q−1R�P−1RQ−1 +

Q−1R�P−1RQ−1R�P−1RQ−1 +

Q−1R�P−1RQ−1R�P−1RQ−1R�P−1RQ−1 + · · ·
≡ V(0) + V(1) + V(2) + V(3) + · · · (21)

in which successive terms can be similarly interpreted.

The terms in Eqs. (20) and (21) follow the simple recursions
2

U(0) = P−1
; U(α) = XU(α−1) , α = 1, 2, . . . (22)

V(0) = Q−1
; V(α) = YV(α−1) , α = 1, 2, . . . (23)

where

X = P−1RQ−1R� , (24)

Y = Q−1R�P−1R . (25)

X is a matrix consisting of N ×N blocks of size 5× 5; the (i, j)th
block is

Xi j = P−1
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�

p ∈ i

�

q ∈ j

Rip(Q−1
)pq(R jq)

� . (26)

The corresponding expression for the (scalar) elements of Y is

Ypq =
�
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(Q−1
)pr

�

i ∈ r∩ q

(Rir)
�P−1

i Riq . (27)

Now consider the case that Q−1
is a full matrix (which would

happen, for example, if the attitude is modelled by a single con-

tinuous spline over the whole mission). Then Xi j is clearly non-

zero for any combination of i and j. From Eq. (22) we have

U(α)

ik =
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Xi jU(α−1)

jk ⇒ U(1)

ik = XikU(0)

kk , (28)

so that in this case already U(1)
is a full matrix. Since Xik involves

a large number of elements from Q−1
, it is clear that the computa-

tion of a single block in U(1)
is already a heavy task. Considering

the next term U(2)
, we see from the left part of Eq. (28) that

the computation of the single block U(2)

ik requires knowledge of

U(1)

jk for every j, making it utterly impracticable. Similar consid-

erations apply to the recursion of the attitude covariance using

Eq. (27). To proceed, we clearly need to introduce some radical

simplifications.
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strument as a function of time. For Gaia the attitude will be

modelled by quaternions whose components are fitted by cubic

splines on a (more or less regular) knot sequence with knot sep-

arations of ∼5–30 s (Lindegren et al. 2012, Sect. 3.3). Instead

of the non-intuitive four-component quaternions we can think of

the attitude as being represented by three angles: one describ-

ing the AL angle (i.e., the rotational phase around the spin axis),

and two describing the AC components of the attitude (i.e., the

direction of the spin axis). To first order, however, is is only the

errors in the AL direction that matter (see Lindegren & Bastian

2011), and as discussed in Sect. 2.1 we only consider the AL
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(14) and expanding recursively gives

U = P−1 +

P−1RQ−1R�P−1 +

P−1RQ−1R�P−1RQ−1R�P−1 +

P−1RQ−1R�P−1RQ−1R�P−1RQ−1R�P−1 + · · ·
≡ U(0) + U(1) + U(2) + U(3) + · · · (20)

Successive terms have a clear physical interpretation in terms

of the propagation of the observational errors alternately from

the sources to the attitude, and from the attitude to the sources.

For example, U(0)
is the covariance of the source parameters due

to the observation noise but with perfect attitude; U(1)
the addi-

tional uncertainty from the attitude errors due to the noisy obser-

vations but assuming true source parameters; U(2)
the additional

uncertainty due to the source errors obtained with perfect atti-

tude propagating through the attitude back to the sources; and so

on. A corresponding expansion can be made for the attitude:

V = Q−1 +

Q−1R�P−1RQ−1 +

Q−1R�P−1RQ−1R�P−1RQ−1 +

Q−1R�P−1RQ−1R�P−1RQ−1R�P−1RQ−1 + · · ·
≡ V(0) + V(1) + V(2) + V(3) + · · · (21)

in which successive terms can be similarly interpreted.

The terms in Eqs. (20) and (21) follow the simple recursions
2

U(0) = P−1
; U(α) = XU(α−1) , α = 1, 2, . . . (22)

V(0) = Q−1
; V(α) = YV(α−1) , α = 1, 2, . . . (23)

where

X = P−1RQ−1R� , (24)

Y = Q−1R�P−1R . (25)

X is a matrix consisting of N ×N blocks of size 5× 5; the (i, j)th
block is

Xi j = P−1

i

�

p ∈ i

�

q ∈ j

Rip(Q−1
)pq(R jq)

� . (26)

The corresponding expression for the (scalar) elements of Y is

Ypq =
�

r

(Q−1
)pr

�

i ∈ r∩ q

(Rir)
�P−1

i Riq . (27)

Now consider the case that Q−1
is a full matrix (which would

happen, for example, if the attitude is modelled by a single con-

tinuous spline over the whole mission). Then Xi j is clearly non-

zero for any combination of i and j. From Eq. (22) we have

U(α)

ik =
�

j

Xi jU(α−1)

jk ⇒ U(1)

ik = XikU(0)

kk , (28)

so that in this case already U(1)
is a full matrix. Since Xik involves

a large number of elements from Q−1
, it is clear that the computa-

tion of a single block in U(1)
is already a heavy task. Considering

the next term U(2)
, we see from the left part of Eq. (28) that

the computation of the single block U(2)

ik requires knowledge of

U(1)

jk for every j, making it utterly impracticable. Similar consid-

erations apply to the recursion of the attitude covariance using

Eq. (27). To proceed, we clearly need to introduce some radical

simplifications.

4. The kinematographic approximation

4.1. Assumptions

The attitude parameters define the spatial orientation of the in-

strument as a function of time. For Gaia the attitude will be

modelled by quaternions whose components are fitted by cubic

splines on a (more or less regular) knot sequence with knot sep-

arations of ∼5–30 s (Lindegren et al. 2012, Sect. 3.3). Instead

of the non-intuitive four-component quaternions we can think of

the attitude as being represented by three angles: one describ-

ing the AL angle (i.e., the rotational phase around the spin axis),

and two describing the AC components of the attitude (i.e., the

direction of the spin axis). To first order, however, is is only the

errors in the AL direction that matter (see Lindegren & Bastian

2011), and as discussed in Sect. 2.1 we only consider the AL

2
Alternatively, U(α) = U(α−1) X�, etc.
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Systematic errors in Gaia catalogue

4620

Measurement process includes effects like:
‣ diffraction of light through telescope,

‣ effective integration time,

‣ motion of the satellite during integration,

‣ CCD readout noise,

‣ CCD charge transfer inefficiencies (due to radiation damage).

CCD Charge Transfer Inefficiencies (CTI):
‣ causes nonlinear distortions of the observed photoelectron counts,

(this is partly mitigated for faint stars by the Supplementary Buried Channel),

‣ introduces correlations between observations through the illumination history,
(this is largely mitigated by regular Charge Injections.)
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Location estimation in presence of radiation damage
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Location estimation in presence of radiation damage
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Effect of image location errors on astrometry 
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Residuals 
after subtracting 

the residual pattern:
(note the scale change!)
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Depending on the application uncertainties can be of crucial importance!
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