Models of asteroids

Josef Řurech

Astronomical Institute, Charles University in Prague

ESAC, April 26, 2012
1 Asteroid models from lightcurve inversion
 - Lightcurves
 - Inverse problem

2 Reliability of the models
 - Real shapes
 - Adaptive optics
 - Occultations

3 Applications
 - Thermal effects
 - YORP effect
 - Yarkovsky effect
Asteroids in the solar system

- main belt
- near-Earth asteroids
- Trojans
What do we know

- ≈ 570,000 known asteroids
 - ≈ 300,000 numbered
 - ≈ 100 new discovered every day
 - we know the orbit in the solar system and the size (from the brightness, 10 m to 1000 km)
- for ≈ 5000 we known the rotation period (1 min to 100 d)
- for ≈ 200 we know the global shape (from the lightcurve inversion)
- for ≈ 20 we know the detailed shape (from space probes, radar,...)

Physical properties are known for a small fraction of the population – we want to know more.
Motivation

- Basic research. Shape reconstruction is a nice example of the applied mathematics – nice inverse problem.
- The knowledge of asteroid physical properties is important for the understanding of the history and evolution of the solar system.
- Thermal emission from the surface affects the orbit – important for the prediction of the collision probability with the Earth. We have to know the shape and the spin.
How do they look like?

space probe
(433 Eros)
How do they look like?

space probe (433 Eros)

radar (1999 KW4)
How do they look like?

space probe (433 Eros)

radar (1999 KW4)

adaptive optics

Keck Observations of (9) Metis
How do they look like?

space probe (433 Eros)

radar (1999 KW4)

adaptive optics

HST (4 Vesta)
How do they look like?

- space probe (433 Eros)
- radar (1999 KW4)
- adaptive optics
- lightcurve inversion
1 Asteroid models from lightcurve inversion
 • Lightcurves
 • Inverse problem

2 Reliability of the models
 • Real shapes
 • Adaptive optics
 • Occultations

3 Applications
 • Thermal effects
 • YORP effect
 • Yarkovsky effect
Asteroid lightcurves

The apparent brightness depends on
- the distance from the Earth and the Sun (known)
- geometry Sun–asteroid–Earth (known)

and unknown parameters
- shape
- rotation state – spin axis direction, period of rotation
- surface properties (albedo, light-scattering behaviour)

Periodic change of brightness caused by rotation – lightcurve. Periods from \(\sim 1\) min to \(\sim 100\) d, typically hours. Amplitudes up to 1.5 mag, typically 0.3 mag.
Inverse problem

From the set of lightcurves (tens) observed under different viewing/illumination geometry (during several years) we can reconstruct shape, spin, period and other parameters – lightcurve inversion (Kaasalainen et al. 2001).

- the best fit model – least squares method
- when sufficiently many different geometries are available, we get a unique convex model
- homogeneous albedo distribution on the surface – no spots (usually good assumption)
Lightcurves can be caused
- irregular shape
- nonuniform albedo distribution
- both

We cannot distinguish between shape/albedo effects, fortunately asteroids are mostly uniform – variations are caused by the shape.
Asteroid models from lightcurve inversion
- Lightcurves
- Inverse problem

Reliability of the models
- Real shapes
- Adaptive optics
- Occultations

Applications
- Thermal effects
 - YORP effect
 - Yarkovsky effect
Comparison with the reality

Good approximation, convex models are good for **global shape characteristics**, spin axis ±5°, accurate rotation period ±0.01 s.

(25143) Itokawa
Laboratory model of an asteroid

Kaasalainen et al. (2005)
(21) Lutetia – model versus reality

size ~ 100 km, Rosetta fly-by – reconstruction of the real shape

comparison of the real shape with the model (± 5 km)
Adaptive optics

Marchis et al. (2006)

we can derive
- unambiguous pole
- size
- nonconvex details

Keck Observations of (9) Metis
- October 25, 2004 at 08:01 UT
- October 25, 2004 at 06:00 UT

Good pole solution
Wrong pole solution

Keck Observation of (130) Elektra
2003-Dec-07 07:16:55 UT

Keck Observation of (511) Davida
2002-Dec-27 11:05 UT
Occultations of stars by asteroids

Asteroids are moving on the stellar background – sometimes they occult a star. The star 'disappears' for a couple of seconds. If there are more observers, we can reconstruct the profile (and compare it with the model).
1. Asteroid models from lightcurve inversion
 - Lightcurves
 - Inverse problem

2. Reliability of the models
 - Real shapes
 - Adaptive optics
 - Occultations

3. Applications
 - Thermal effects
 - YORP effect
 - Yarkovsky effect
Thermal effects on asteroids

Yarkovsky effect – anisotropic thermal emission causes non-zero net force → measurable change of the orbit.

Yarkovsky-O’Keefe-Radzievskii-Paddack effect – non-zero net torque → measurable change of the rotation period.

\[d\vec{f} = -\frac{2}{3} \frac{\epsilon \sigma T^4}{c} d\vec{S} \]

\[\vec{f} = \int_S d\vec{f} \]

\[\vec{T} = \int_S \vec{r} \times d\vec{f} \]

Brož et al. (2005)
If the rotation rate changes $\omega = 2\pi/P$ linearly in time, then $|\Delta \phi|$ changes quadratically in time $\Delta \phi \sim t^2$.

Small changes of the order of 0.1 s can be detected – during decades the phase difference is $> 10^\circ$.
Asteroid (3103) Eger – models versus data

1986/7/6.4

1987/2/2.4

1996/7/20.0

2009/4/15.9

Relative intensity

Phase of rotation

YORP

constant period
Measured value \((9 \pm 6) \times 10^{-9} \text{ rad/d}^2\) (the change of the period 2.7 ms/yr, \(P \sim 5.71\) h) agrees with the theoretical value. YORP is a natural explanation of the observed spin-up.
Yarkovsky effect

Thermal inertia causes that the maximum of the temperature is not at the 'noon', but shifted. The net force in the direction of the velocity vector changes the orbit.

- prograde rotation enlarges the orbit
- retrograde shrinks
- important for the evolution of the solar system – asteroids migrate significantly
- important for the ephemeris prediction
Yarkovsky effect – importance for the humankind

Asteroid (99942) Apophis close encounter with the Earth April 13, 2029 with the distance $\sim 30\,000\,\text{km}$ from the Earth, which will significantly change its orbit. For an accurate prediction of its next encounter in 2036 the accuracy of $\sim 100\,\text{m}$ is needed– Yarkovsky effect plays an important role (can shift the asteroid of some km), thus the shape and spin, thus model! Radar observations in 2013 will solve it.
The lightcurve inversion methods provides reliable results – will be used to invert data from big surveys Pan-STARRS, Gaia, LSST – \(\sim 10,000 \) models.

Further development of the tools – multi data inversion, automatic processing, ...

ASTEROIDS@HOME – distributed computation – to solve time-consuming inversion problem for hundreds of thousands of asteroids.