Models of asteroids

Josef Ďurech

Astronomical Institute, Charles University in Prague

ESAC, April 26, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Contents

1 Asteroid models from lightcurve inversion

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Lightcurves
- Inverse problem

Reliability of the models

- Real shapes
- Adaptive optics
- Occultations

3 Applications

- Thermal effects
 - YORP effect
 - Yarkovsky effect

Asteroids in the solar system

- main belt
- near-Earth asteroids
- Trojans

- ullet \sim 570 000 known asteroids
 - $\bullet~\sim 300\,000$ numbered
 - ullet ~ 100 new discovered every day
 - we know the orbit in the solar system and the size (from the brightness, 10 m to 1000 km)
- ullet for \sim 5000 we known the rotation period (1 min to 100 d)
- ullet for \sim 200 we know the global shape (from the lightcurve inversion)
- $\bullet\,$ for ~ 20 we know the detailed shape (from space probes, radar,...)

Physical properties are known for a small fraction of the population – we want to know more.

- Basic research. Shape reconstruction is a nice example of the applied mathematics nice inverse problem.
- The knowledge of asteroid physical properties is important for the understanding of the history and evolution of the solar system.
- Thermal emission from the surface affects the orbit important for the prediction of the collision probability with the Earth. We have to know the shape and the spin.

space probe (433 Eros)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

space probe (433 Eros)

radar (1999 KW4)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

space probe (433 Eros)

radar (1999 KW4)

adaptive optics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

space probe (433 Eros)

radar (1999 KW4)

adaptive optics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

HST (4 Vesta)

space probe (433 Eros)

radar (1999 KW4)

HS

adaptive optics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

HST (4 Vesta)

lightcurve inversion

Contents

Asteroid models from lightcurve inversion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Lightcurves
- Inverse problem

Reliability of the models

- Real shapes
- Adaptive optics
- Occultations

3 Applications

- Thermal effects
 - YORP effect
 - Yarkovsky effect

Asteroid lightcurves

The apparent brightness depends on

- the distance from the Earth and the Sun (known)
- geometry Sun-asteroid-Earth (known)
- and unknown parameters
 - shape
 - rotation state spin axis direction, period of rotation
 - surface properties (albedo, light-scattering behaviour)

Periodic change of brightness caused by rotation – lightcurve. Periods from $\sim 1 \text{ min}$ to $\sim 100 \text{ d}$, typically hours. Amplitudes up to 1.5 mag, typically 0.3 mag.

From the set of lightcurves (tens) observed under different viewing/illumination geometry (during several years) we can reconstruct shape, spin, period and other parameters – lightcurve inversion (Kaasalainen et al. 2001).

- the best fit model least squares method
- when sufficiently many different geometries are available, we get a unique convex model
- homogeneous albedo distribution on the surface no spots (usually good assumption)

Shape versus albedo

Lightcurves can be caused

- irregular shape
- nonuniform albedo distribution
- both

We cannot distinguish between shape/albedo effects, fortunately asteroids are mostly uniform – variations are caused by the shape.

Contents

1 Asteroid models from lightcurve inversion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Lightcurves
- Inverse problem

Reliability of the models

- Real shapes
- Adaptive optics
- Occultations

B Applications

- Thermal effects
 - YORP effect
 - Yarkovsky effect

Comparison with the reality

Good approximation, convex models are good for global shape characteristics, spin axis $\pm 5^{\circ}$, accurate rotation period ± 0.01 s.

(25143) Itokawa

Laboratory model of an asteroid

Kaasalainen at al. (2005)

(21) Lutetia – model versus reality

size ~ 100 km, Rosetta fly-by – reconstruction of the real shape

comparison of the real shape with the model $(\pm 5 \text{ km})$

-

Adaptive optics

Marchis et al. (2006)

we can derive

- unambiguous pole
- size
- nonconvex details

Asteroids are moving on the stellar background – sometimes they occult a star. The star 'disappears' for a couple of seconds. If there are more observers, we can reconstruct the profile (and compare it with the model).

Contents

Asteroid models from lightcurve inversion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Lightcurves
- Inverse problem

Reliability of the models

- Real shapes
- Adaptive optics
- Occultations

3 Applications

- Thermal effects
 - YORP effect
 - Yarkovsky effect

Thermal effects on asteroids

Yarkovsky effect – anisotropic thermal emission causes non-zero net force \rightarrow measurable change of the orbit.

Yarkovsky-O'Keefe-Radzievskii-Paddack effect – non-zero net torque

 \rightarrow measurable change of the rotation period.

$$d\vec{f} = -\frac{2}{3} \frac{\epsilon \sigma T^4}{c} d\vec{S} \qquad \vec{f} = \int_S d\vec{f} \qquad \vec{T} = \int_S \vec{r} \times d\vec{f}$$

YORP detection from the change of the phase

If the rotation rate changes $\omega = 2\pi/P$ linearly in time, then $|\Delta \phi|$ changes quadratically in time $\Delta \phi \sim t^2$.

Small changes of the order of 0.1s can be detected – during decades the phase difference is $>10^\circ.$

Asteroid (3103) Eger - models versus data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Model versus data - detail

Measured value $(9 \pm 6) \times 10^{-9} \text{ rad/d}^2$ (the change of the period 2.7 ms/yr, $P \sim 5.71 \text{ h}$) agrees with the theoretical value. YORP is a natural explanation of the observed spin-up.

Thermal inertia causes that the maximum of the temperature is not at the 'noon', but shifted.

The net force in the direction of the velocity vector changes the orbit.

- prograde rotation enlarges the orbit
- retrograde shrinks
- important for the evolution of the solar system – asteroids migrate significantly
- important for the ephemeris prediction

Yarkovsky effect - importance for the humankind

Asteroid (99942) Apophis close encounter with the Earth April 13, 2029 with the distance $\sim 30\,000$ km from the Earth, which will significantly change its orbit. For an accurate prediction of its next encounter in 2036 the accuracy of ~ 100 m is needed– Yarkovsky effect plays an important role (can shift the asteroid of some km), thus the shape and spin, thus model! Radar observations in 2013 will solve it.

- The lightcurve inversion methods provides reliable results will be used to invert data from big surveys Pan-STARRS, Gaia, LSST $\sim 10\,000$ models.
- See DAMIT Database of Asteroid Models from Inversion Techniques – for more info http://sirrah.troja.mff.cuni.cz/projects/asteroids3D
- Further development of the tools multi data inversion, automatic processing, ...

 ASTEROIDS@HOME – distributed computation – to solve time-consuming inversion problem for hundreds of thousands of asteroids.