

Ralph Schönrich (MPA, Hubble Fellow, OSU) with

Martin Asplund, James Binney Thomas Bilitewski, Luca Casagrande Walter Dehnen, Heather Morrison

-cold gas and stars -no heating of the disc - cf, Sellwood & Binney (2002)

radial spacing 0.25 kpc time spacing 30 Myrs Bluning -stars on increasingly excentric on its (heating of the disc) → broadening of the disc and increasing scale n ight

Main fields

- Galactic chemo-dynamics
- abundance gradients and their implications
- understanding the Galactic thick disc
- LSR determination
- stellar distance statistics
- Galactic rotation

Solar velocity from stellar kinematics

The dual halo question

Galactic Parameters - methods

Solar azimuthal V $V_{g,\odot} = V_{\odot} + V_c$ Disc circular velocity

Local Standard of Rest

Methods

Proper motion of Sgr A* (Reid et al. 2004) – requires R_0

HI terminal velocity (see McMillan 2011)

Molecular clouds / MASERs (Reid & Brunthaler 2004)

Halo Streams (Ibata et al. 2001, Majewski et al. 2006)

Oort constants (Oort 1927)

LSR (Strömberg 1947, Schönrich, Binney & Dehnen 2010)

Rotation – the dry view

Seen from above

Radial velocities in the plane from SEGUE

Rotation: A danger when measuring the solar motion

Samples are lopsided (northern/southern sky) \rightarrow rotation bias

Divide and conquer: The rotation of components

Get the absolute solar velocity

Simple: azimuthal velocities must match the absolute rotation

Behavioural differences

On the slide – radius from velocity trend

Quo vadis? Using the direction of motion

Applying the motion angle

preliminary

Values

Velocity match + Sgr A*

 $V_{Sun} = (241 \pm 10) \text{ km/s}$ $R_0 = (7.97 \pm 0.35) \text{ kpc}$

Velocity trend

 $R_0 = (8.43 \pm 0.57) \text{ kpc}$

Combined

 $V_{sun} = (245 \pm 9) \text{ km/s} R_0 = (8.11 \pm 0.29) \text{ kpc}$ $V_c = (233 \pm 9) \text{ km/s}$ Blended with McMillan(2011) $V_{sun} = (249.5 \pm 4.2) \text{ km/s} R_0 = (8.25 \pm 0.14) \text{ kpc}$ $V_c = (237 \pm 5) \text{ km/s}$

Summary

- Heliocentric radial velocities provide easy and less biased access to the rotation of components, without modelling

- Three new and independent estimators for Galactic rotation and solar position, competitive at SEGUE

- Requires large samples with significant spatial extent, hence far better with Gaia

- Radial velocity determinations for the Sun must account for the rotation of components

 method requires a low systematic distance error (reddening, metallicities, helium enrichment, etc.), currently using Schönrich, Binney & Asplund (2012)

- vulnerable to systematic proper motion errors

- requires approximate axisymmetry

Distances, Gaussianity and the alleged duality of the Galactic halo

The issue

Sample

SEGUE DR7 calibration stars

~ 33000 metal poor stars (metallicity bias, no kinematic bias)

- biased towards lower metallicities
- kinematics not biased against metallicity

Claims by Carollo et al. (2007, 2010)

- 10-20% distance errors
 - Achieved by sorting stars into stellar branches
- Gaussian analysis applicable Three disc components
- Two halo components
- Distinct outer halo component More metal poor
 - Very high vertical velocity dispersion
 - **Retrograde motion**

How to make trees run... (if you are not J.R.R. Tolkien)

How to make trees run...

How to make trees run...

Over/-underestimate the distance!

Proper motion must not be aligned with the line of sight

SEGUE azimuthal velocities have almost no radial velocity support

Gravities on colour

-almost no branches apparent - gravities do not allow for a clean cut -crowding of counterrotating stars in the turnoff region

Gravities on colour

Gravities vs metallicity

Downslope with metallicity increases relative number of metal poor turnoff stars

Gravities vs metallicity

Reconstructed colour-magnitude diagram

Absolute magnitudes reconstructed from Carollo et al. (2010) distances and pipeline dereddened photometry

Reconstructed colour-magnitude diagram

Metal poor stars

Vertical dispersion vs metallicity

Velocity distributions

Fitting azimuthal velocities

Fitting azimuthal velocities

Summary

The Carollo et al. outer halo is a consequence of distance errors (up to 50% in the tail) and use of Gaussian analysis (cf. Strömberg 1927)

- sorting stars into unphysical positions in CMD
- magnitude uncertainties in the turn-off region
- problems with gravities at lowest metallicities
- We cannot find any reliable distinct outer halo component

The azimuthal V distribution can be fit by single disc + halo

A slight excess of high vertical motion stars coincides with a stream found by Helmi et al. (1999)

Analysis provides an improved distance estimator

The skies are falling!

But that's not all

Gravity selection on samples

Can detect a distance spread

