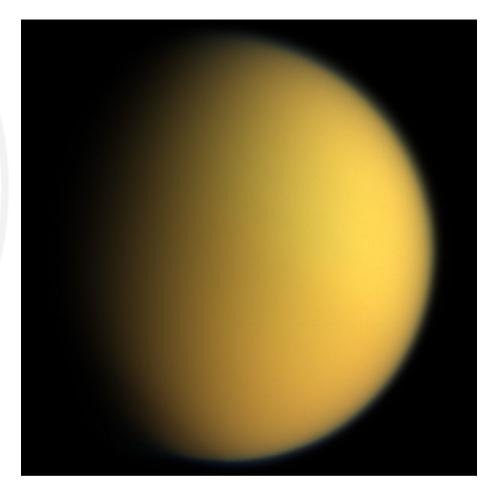
Hydrogen on Venus, µdiamonds on Earth and Valhalla on Callisto: signposts of ****s in the Solar System


José Antonio Caballero Centro de Astrobiología (CSIC-INTA)

CAB-ESAC µseminars

Atmospheric mass ratio per element: 1. Atmosphere mass of a

(spherical) planet

- $P_{atm} = F / S$
- $F = M_{atm} g$
- S = 4 π R²
- $g = G M_{planet} / R^2$
 - $M_{atm} = 4 \pi R^2 P / G M_{planet}$

Atmospheric mass ratio per element: 2. Atmosphere composition (mass)

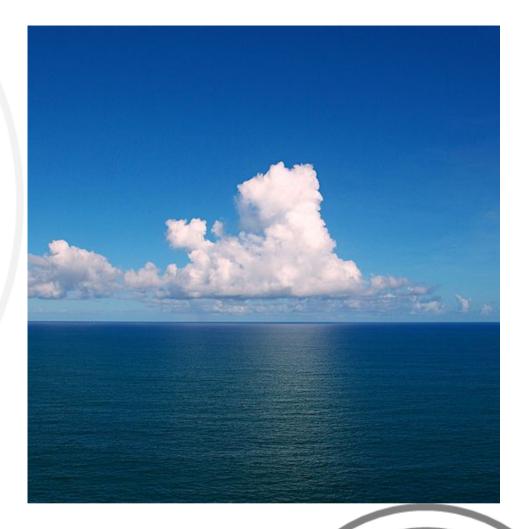
E.g., on Earth: • $X_N = 0.7808 [N_2]$ • $X_O = 0.2095 + 0.004(16/18)$ + $0.00039(32/44) [O_2 + H_2O]$ + CO_2]

Σ X_i = 1, i = H, C, N, O, Ar

Atmospheric mass ratio per element: 3. Atmosphere composition (cont.)

- **Venus:** 96.5% CO₂, 3.5% N2, H₂O, SO₂, CO, Ar
- Earth: 78.08% N₂, 20.95% O₂, 0.93% Ar, H₂O, CO₂
- **Mars:** 95.3% CO₂, 2.7% N2, H₂O, H2, O₂, CO, Ar
- Titan: 95.0% N₂, 4.9% CH₄, traces of Ar

Martian sunset at Gusev crater


Atmospheric mass ratio per element

M _{atm} /M _{planet} M _{Earth}	² 1H [10 ⁻¹⁰]	²⁴ 12 [10 ⁻¹⁰]	²⁸ 14N [10 ⁻¹⁰]	³² 16 0 [10 ⁻¹⁰]	³⁶ 18 Ar [10 ⁻¹⁰]
Venus 0.815	2.20	26100	34700	69600	69.4
Earth 1.00	0.196	0.937	6880	1880	82.3
Mars 0.107	0.0146	99.5	10.3	266	6.12
Titan 0.0225	8230	24700	639000	46700	6.72

Atmospheric mass ratio per element: 4. Earth hydrosphere

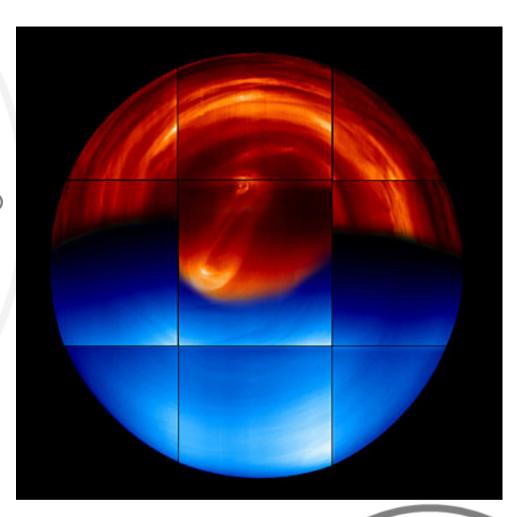
M_{hydro} = 1.4 10²¹ kg (M_{Earth} = 5.98 10²⁴ kg)
O: 85.84%, H: 10.82%, C:

0.0028%

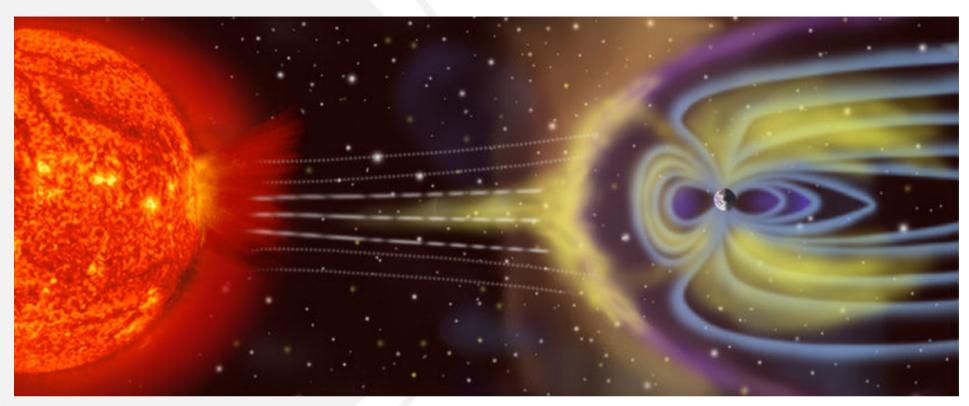
Σ X_i = 1, i = H, C, O, Cl, Na, Mg, Ca, K, Br...

Atmospheric mass ratio per element

M _{atm} /M _{plane} M _{Earth}	et ² 1H [10 ⁻¹⁰]	²⁴ 12 ^C [10 ⁻¹⁰]	²⁸ 14N [10 ⁻¹⁰]	³² 16 0 [10 ⁻¹⁰]	³⁶ 18 Ar [10 ⁻¹⁰]
Venus 0.815	2.20	26100	34700	69600	69.4
Earth+Hydr 1.00	o 25400	>> 66.6 (+crust)	6880	2.01 10 ⁶	82.3
Mars 0.107	0.0146	99.5	10.3	266	6.12
Titan 0.0225	8230	24700	639000	46700	6.72


Atmospheric mass ratio per element

M _{atm} /M _{plane} M _{Earth}	et ² 1H [10 ⁻¹⁰]	²⁴ 12 ^C [10 ⁻¹⁰]	²⁸ 14N [10 ⁻¹⁰]	³² 16 [10 ⁻¹⁰]	³⁶ 18 Ar [10 ⁻¹⁰]
Venus 0.815	2.20	26100	34700	69600	69.4
Earth+Hydr 1.00	°o 25400	>> 66.6 (+crust)	6880	2.01 10 ⁶	82.3
Mars 0.107	0.0146	99.5	10.3	266	6.12
Titan 0.0225	8230	24700	639000	46700	6.72


Venus' hydrogen

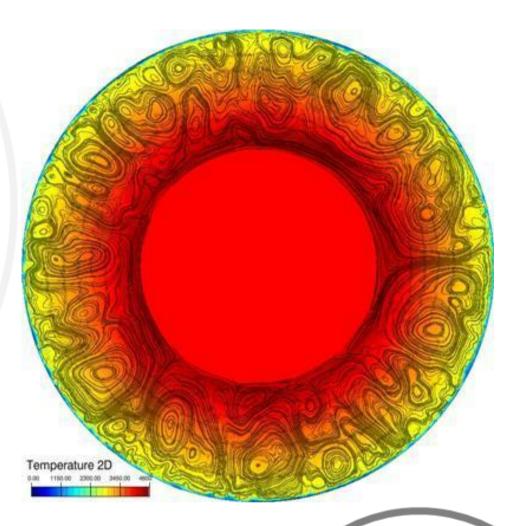
A small fraction bound up in H₂SO₄ and H₂S mostly
The definitive test: **D/H** ratio 0.025 (on Earth 0.00016)

- Deuterium ²₁H is twice more massive than hydrogen ¹₁H
- D/H ratio in Venus' upper atmosphere >> 0.025

LOST IN SPACE

Venus' upper atmosphere

• Solar UV radiation dissociates water molecules into oxygen and hydrogen ions

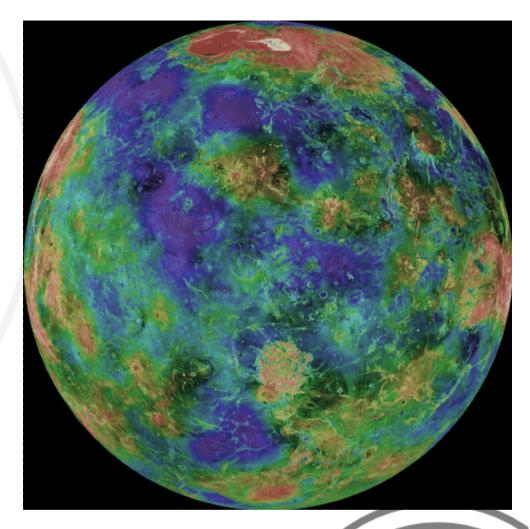

 Solar wind gives kinetics energy to ions that escape the gravity field

• Atmospheric erosion (H, He, O...) due to a weak magnetosphere

F_{UV}, K(m), B(P_{rot})

Venus' magnetic field

- Lack of an appreciable magnetic field (internal dynamo vs. ionosphere +solar wind)
- A dynamos requires: a conducting liquid, **rotation** and convection
- Reduced heat loss ← No plate tectonics ← Strong, low-viscosity crust ← Water deficit (heat released during resurfacing events)
 (Sulfur-dependent) status
- of core is uknown

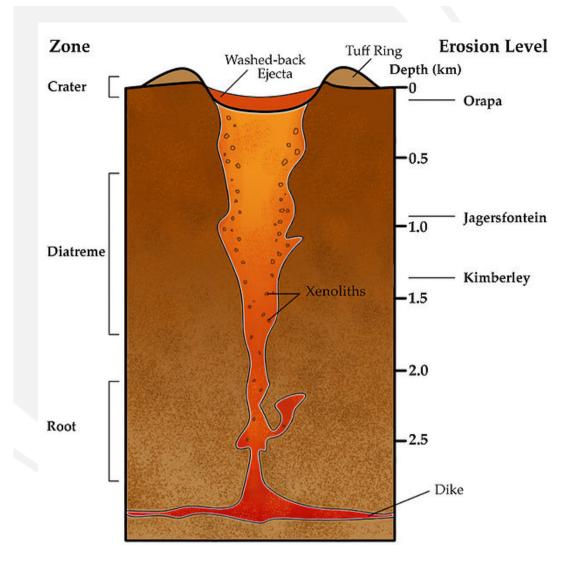


" "Problema del huevo y la gallina"

Venus' rotation

P_{orb} = 224.70 d
P_{rot} = -243.02 d

SLOW retrograde rotation. Why? Tidal resonances (Venus atmosphere+ Sun) vs. ****\$



A Jacques Laskar's theory...

Diamonds: an allotrope of carbon

Graphite (graphene), amorphous ("coal"), buckminsterfullerenes (C₆₀, nanotubes), glassy, nanofoam, lynear acetylenic carbon, lonsdaleite

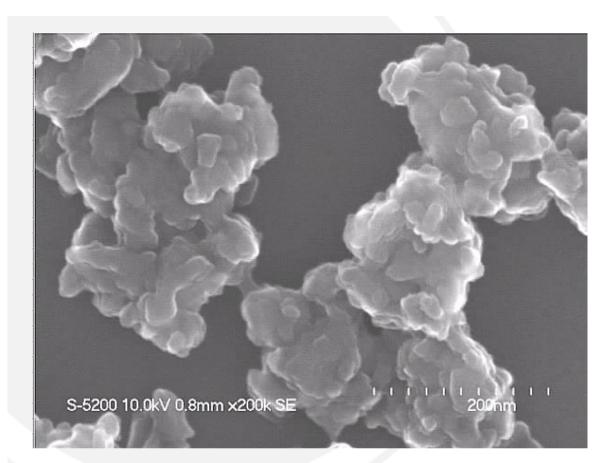
(Natural) diamonds: origin

• Very high pressure and temperature

- 140-190 km in depth in mantle from carboncontaining minerals
- Growth for 1.0-3.3 Ga
 Brought to surface by magma during volcanic eruptions

Kimberlites, lamproites

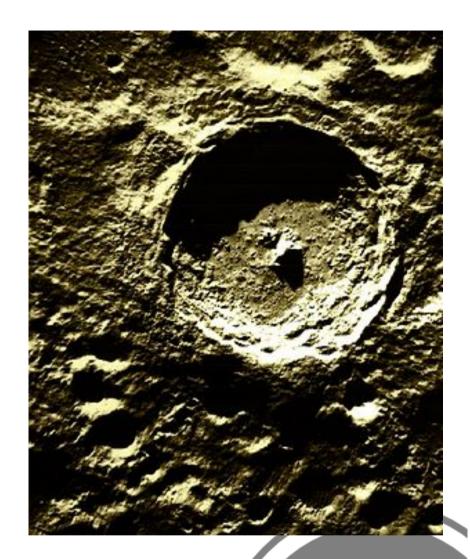
Carbonado diamonds: ?


"Black diamonds"
Brought by and asteroid?
Formed in a supernova explosion???

Shock metamosphism

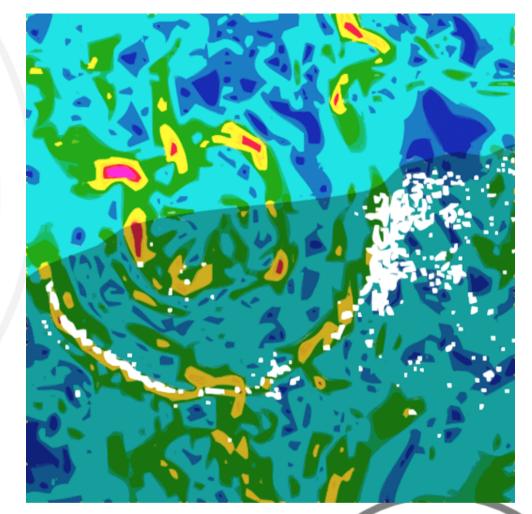
Nanodiamonds: nm to µm

 Ultradispersed detonation nanodiamonds
 Oxygen-deficient mixture of TNT/RDX in a close chamber


Impact (*****) craters

• Valhalla: the largest multi-ring basin in the Solar System (3800 km diameter)

Odin's hall in Norse mythology


• **Tycho**: 86.21 km in diameter, 4.8 km in depth, 108 Ma old

Distinctive ray system and system of satellite craters
Possibly associated to asteroid 289 Baptistina

"TMA-1"

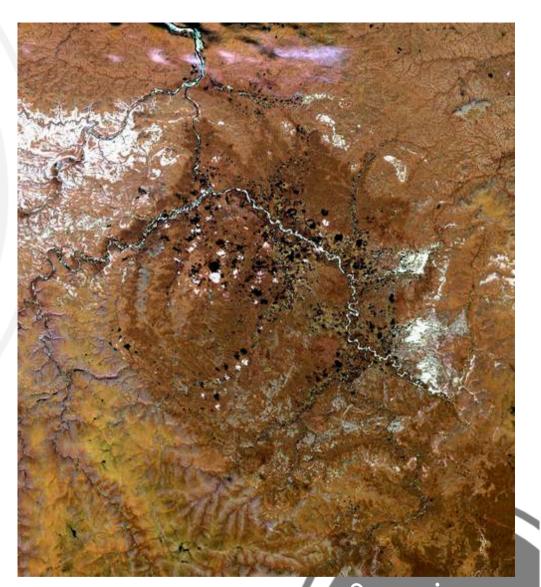
- **Chicxulub**: 180 km diameteter crater in Yucatán Peninsula
- At the Cretaceous-Paleogene boundary (-65.5 ± 0.3 Ma)
- Impacting bolide: 10 km
 Multiple impact crater: simultaneous SL9-like events: Boltysh (24 km), Silverpit/North Sea (20 km)

And Shiva crater (450-600 km)?

Vredeford: 250-300 km diameter in South Africa
Slightly larger than the Sudbury Basin/Ontario (which is elongated and includes the Temagami Magnetic Anomaly)

Also: Wilkes Land/ Antarctica

- Nördlinger Ries/Bavaria + Steinheim/B-W: 24+3.8 km only 14.3-14.5 Ma ago
- Impact of binary asteroid of 1500+150 m, angle of 30-50 deg, velocity of about 20 km/s
 Released energy: 2.4 10²¹ J (1.8 million Hiroshima bombs)


72000 Tm of **µdiamonds** (0.2 mm)

Popigai/Siberia: 100 km, 35.7 ± 0.2 Ma ago
Impactor: chondrite (8 km) or stony (5 km) impactors

 Not investigated until 1997: mines constructed by gulag prisoners under Stalin

• Shock pressure: graphite into diamonds within 13.6 km radius

• Diamonds 0.5-2 mm

Specimens of up to 10 mm with striations Hydrogen on Venus, µdiamonds on Earth and Valhalla on Callisto: **signposts of IMPACTs in the Solar System**

Double impact in Venus may explain both the slow retrograde orbit and the absence of a moon... Need of in situ isotope analysis

Remember the giant collision hypothesis

http:// exoterrae.eu/