Study of cyclotron line sources, the present and the future.
Outline

• A quick summary

• A theoretical study on the origin of cyclotron line energy flux dependency

• New INTEGRAL determination of a positive flux-centroid energy in GX 304-1

• IGR J18179-1621: a new cyclotron source?

• RX J0440.9+4431: a new cyclotron line source.

• Prospects for future missions.
High B-field: an ubiquitous phenomenon

- Low mass X-ray binaries normally associated with low-B (10^{8-9} G) neutron star (old systems). An exception is, e.g., Her X-1
 - Roche lobe overflow -> accretion disk
 - transient or persistent

- High mass X-ray binaries are normally young systems, where NS has a high B-field (10^{12-13} G)
 - wind-fed systems but with formation of transient accretion disk
 - transients or persistent

- Be-Xray binaries are very important, as they become very bright during outbursts and give high S/N

$$\frac{L_{\text{outburst}}}{L_{\text{quiescence}}} \sim 10^3$$
Some famous sources

Be-binaries

• 4U 0115+63:
 – B ~ 10^{12} G, the lowest
 – Fundamental cyclotron line plus 5 higher harmonics detected
 – P_{\text{spin}}=3.6 \text{ s}. Spectrum is highly variable with spin phase.

• V 0332+53:
 – B ~ 2\times 10^{12} G, 3 harmonics
 – P_{\text{spin}}=4.4 \text{ s} not very variable with spin phase

• A 0535+262:
 – B ~ 5\times 10^{12} G, 2 harmonics
 – P_{\text{spin}}= 103 \text{ s}

Roche lobe overflow

• Her X-1:
 – B ~ 4\times 10^{12} G
 – Fundamental cyclotron line plus 1 higher harmonic
 – P_{\text{spin}}=1 \text{ s}. Spectrum is highly variable with spin phase and superorbital modulation
Emission mechanisms in a high magnetic field

- Accreting matter acquires a high kinetic energy $v \sim c/2$ which is partially dissipated close to the compact object surface and emitted in the form of X and Gamma-rays.

- If the neutron star has a considerable magnetic field, the accreting matter is channeled at the magnetic poles along the field lines and accretes on the poles.

- For high accretion rates, radiation dominates: a radiative shock and accretion column form.

- Seed photons coming from thermal mound and electron bremsstrahlung, in the high B-field, are Compton scattered.

Becker & Wolff (2007)
Electrons are exited to the first Landau level and then re-emit.

To be observed in the X-ray domain, a B-field of 10^{12-13} G is required.

\[E_n = m_e c^2 \sqrt{1 + 2n(B/B_{\text{crit}}) \sin^2 \theta - 1} \frac{1}{\sin^2 \theta \left(1 + \frac{1}{z'}\right)} \]

4.4×10^{13} G

Cyclotron lines

Kreikenbohm et al. (2005)

V 0332+53

Isenberg et al. (1998)
Continuum physical model

• One long BeppoSAX observation in 1999. We introduced the cyclotron emission model, and added a lower energy Comptonization component. Satisfactory description of the properties of 4U 0115+634.

Thermal Comptonization of 0.5 keV BB
\[T_e \sim 2-3 \text{ keV} \]
CompTT

Gaussian to correct the rough modeling

Thermal and bulk Comptonization of cyclotron emission.
\[T_e \sim 6-10 \text{ keV} \]
\[B \sim 0.6-0.8 \times 10^{12} \text{ G} \]
(Becker & Wolff, 2007)

Ferrigno et al. (2009)
Soft scattering halo?

- Pronounced phase variations of continuum and lines.
- Hard component prominent in the peak, soft component spread in phase: a scattering halo?

Ferrigno et al. (2009)
• RXTE/INTEGRAL data in 3-100 keV band
• Anti correlation with luminosity
• Radiation enlarges the column

V 0332+53

Her X-1

• RXTE data of main-on (obscuration from disc)
• Correlation with luminosity
• Accretion squeezes the column
Pulse to Pulse Variability

- During the bright phase (!) of an outburst
- Rate resolved spectroscopy reveals trend!
- Evidence of different accretion regimes in four bright sources

Klochkov et al (2011)
Different accretion regimes

- Column is a region magnetically confined
- Depending on its width and amount of accretion, radiation can play an important role.
- Eddington limit must be adapted for the geometrical and cross section effects

$L_{\text{Edd}} = \frac{4\pi G M_\ast m_p c}{\sigma_T}$

$\frac{\pi r_0^2}{4\pi R_*^2} = \frac{GM_\ast m_p c}{\sigma_\parallel} \frac{\pi r_0^2}{R_*^2}$
A critical luminosity

\[L_{\text{crit}} = \frac{GM_* m_p c}{\sigma_{||}} \frac{\pi r_0^2}{R_*^2} \left(\frac{R_*}{49H} + 1 \right). \]

\text{Height of the radiative shock}

Our goal is to express the parameters \(r_0, \sigma_{||}, \) and \(H \) appearing on the right-hand side of Eq. (9) in terms of observable quantities.

- Equation is derived following Basko & Sunyaev (1977) by:
 - assuming a strong radiative shock (\(L > L_{\text{Edd}} \))
 - free-fall velocity (\(v_{\text{ff}} \)) upstream and \(v_{ps} = 1/7 v_{\text{ff}} \) downstream
 - constant deceleration below the shock
 - radiation braking

\[a = \frac{v_{ps}^2}{2H} = \frac{GM_*}{49R_* H}. \]

\[a = \left(\frac{L_X}{L_{\text{Edd}}^*} - 1 \right) \frac{GM_*}{R_*^2}. \]

Becker et al. (2012)
• Use the surface magnetic field and assume a dipole structure, a variation of the emission height translates into a variation of the observed cyclotron scattering centroid energy

\[
E_\ast = 11.58 \text{ keV} \left(\frac{B_\ast}{10^{12} \text{G}} \right)
\]

\[
\frac{E_{\text{cyc}}}{E_\ast} = \left(\frac{R_\ast + h}{R_\ast} \right)^{-3}
\]

• where h is \(h_s \) or \(h_c \) in the two regimes

Comparison to data

Becker et al. (2012)
Comparison to data

Becker et al. (2012)

<table>
<thead>
<tr>
<th>Source</th>
<th>Long-term ξ [keV]</th>
<th>Long-term L_{crit} [10^{37} erg sec$^{-1}$]</th>
<th>Pulse-pulse ξ [keV]</th>
<th>Pulse-pulse L_{crit} [10^{37} erg sec$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4U 0115+63</td>
<td>5.72×10^{-2}</td>
<td>17.0</td>
<td>2.14×10^{-2}</td>
<td>16.5</td>
</tr>
<tr>
<td>V 0332+53</td>
<td>7.86×10^{-3}</td>
<td>29.7</td>
<td>1.43×10^{-3}</td>
<td>27.0</td>
</tr>
<tr>
<td>Her X-1</td>
<td>-</td>
<td>43.5</td>
<td>-</td>
<td>43.5</td>
</tr>
<tr>
<td>A 0535+26</td>
<td>-</td>
<td>48.0</td>
<td>-</td>
<td>48.0</td>
</tr>
<tr>
<td>GX 304-1</td>
<td>-</td>
<td>58.0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
4U 0115+63, is the line variation real?

• Only the fundamental shows a variation, the higher harmonics are stable!! -> fit is wrong (2008 outburst using NPEX continuum model)

Li et al. (2012)
• I call it Wrong !!!!!
• Large sigma in Gaussian or width in Lorentzian lines.

\[\text{NPEX}(E) = (A_1 E^{-\alpha_1} + A_2 E^{+\alpha_2}) \exp \left(-\frac{E}{kT} \right), \]
High energy cut-off PL

- Still artificial suppression of continuum

\[
I_{\text{cont}} = K \cdot \begin{cases}
E^{-\Gamma}, & \text{if } E \leq E_{\text{cutoff}} - \Delta E \\
E^{-\Gamma} \cdot \exp\left(-\frac{E - E_{\text{cutoff}}}{E_{\text{fold}}}\right), & \text{if } E > E_{\text{cutoff}} + \Delta E \\
AE^3 + BE^2 + CE + D, & \text{if } E_{\text{cutoff}} - \Delta E < E < E_{\text{cutoff}} + \Delta E,
\end{cases}
\]
High-E cut-off PL + 9 keV Gaussian

\[
I_{\text{Model}} = I_{\text{cont}} + K_{\text{bump}} \exp\left\{-\frac{(E - E_{\text{bump}})^2}{2\sigma_{\text{bump}}^2}\right\},
\]

- More correct
• Adopt a more complex continuum, so that the lines do not fudge the continuum itself

Mueller, Ferrigno et al. (in prep)
Luminosity dependency vanishes

- Coherent fundamental and first harmonic non-variation

Mueller, Ferrigno et al. (in prep)
• Outburst in 2011 when it reached Crab-like flux

• A flux-cyclotron line positive correlation has been reported during previous outbursts using Suzaku and RXTE

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Obs. ID</th>
<th>Mid. MJD</th>
<th>Exposure [ksec]</th>
<th>JEM-X</th>
<th>IBIS</th>
<th>SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1131</td>
<td>09400230006</td>
<td>55944.0</td>
<td>64.6</td>
<td>42.7</td>
<td>68.6</td>
<td></td>
</tr>
<tr>
<td>1132</td>
<td>09400230007</td>
<td>55947.0</td>
<td>42.4</td>
<td>31.9</td>
<td>36.6</td>
<td></td>
</tr>
<tr>
<td>1133</td>
<td>09400230008</td>
<td>55950.0</td>
<td>–</td>
<td>–</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>1134</td>
<td>09400230009</td>
<td>55952.8</td>
<td>7.3</td>
<td>25.4</td>
<td>37.8</td>
<td></td>
</tr>
<tr>
<td>1135</td>
<td>09400230010</td>
<td>55955.7</td>
<td>–</td>
<td>6.7</td>
<td>25.1</td>
<td></td>
</tr>
<tr>
<td>1136</td>
<td>09400230011</td>
<td>55958.7</td>
<td>36.9</td>
<td>28.1</td>
<td>32.9</td>
<td></td>
</tr>
<tr>
<td>1137</td>
<td>09400230012</td>
<td>55962.0</td>
<td>78.1</td>
<td>59.7</td>
<td>78.4</td>
<td></td>
</tr>
<tr>
<td>1138</td>
<td>09400230013</td>
<td>55965.0</td>
<td>60.7</td>
<td>45.2</td>
<td>52.3</td>
<td></td>
</tr>
</tbody>
</table>

Klochkov et al. (2012)
Positive correlation

- Beautiful measures of another subcritical system
A new cyclotron source?

- IGR J18179-1621 discovered during quick-look (ATeL #3947)
- Observed by INTEGRAL serendipitously
- Swift/XRT follow-up campaign
- Strong indication of a cyclotron line at ~20 keV

Bozzo, Ferrigno et al. (2012)
Difficult timing study

Data

Simulations
Timing results

- Estimate confidence of determination using MC simulation and Z^2 statistics technique
- At 99% c.l., we can retain just 4 out of 9 determinations

Bozzo, Ferrigno et al. (2012)
• Classified as persistent Be/X-ray binary at 3.3 kpc distance
• Series of flares separated of ~155 days in 2010-2011
• Three papers published and one in preparation
A dip-like structure at high L

• A dip-like structure appeared during the first outburst at soft X-rays
• Interpreted as due to occultation from the accretion stream
• Introduced a very soft BB for a better fit (the accretion stream?)
A cyclotron absorption in INTEGRAL

- Hard X-ray coverage by INTEGRAL of second outburst
- Discovery of an absorption feature due to cyclotron scattering
- Magnetic field strength confirmed by PSD analysis.
Analysis of Swift/BAT data confirms periodicity and gives a typical Be/X-ray binary orbital light curve $P_{\text{orb}}=(147.9+/-0.3)$
RXTE-Swift/XRT follow-up

- Spectral hardening as function of luminosity, the same in three outbursts, due to high E_{cut} and larger BB area
- Spectrum is combination of BB+cutoffPL with low absorption $N_H \sim 0.7 \times 10^{22} \text{ cm}^{-2}$
- BB not detectable at low luminosity with RXTE but detected in quiescence by XMM-Newton (La Palombara et al., 2011)
BB radius and luminosity

- BB radius increases with L, as expected in disk-fed systems.
- slope is steeper than expected if BB radius is coupled with magnetospheric radius.
- At highest luminosity, decrease?

\[r_0 = 1.93 \times 10^5 \text{ cm} \left(\frac{\Lambda}{0.1} \right)^{-1/2} \left(\frac{M_*}{1.4 M_\odot} \right)^{-1/14} \left(\frac{R_*}{10 \text{ km}} \right)^{11/14} \times \left(\frac{B_*}{10^{12} \text{G}} \right)^{-2/7} \left(\frac{L_*}{10^{37} \text{erg sec}^{-1}} \right)^{1/7} \]
Future
• 4U 0115+63 in outburst, fit with a complex model using Beppo-SAX broad-band data (45 ks)
• Astro-H will provide in 10 ks a better constraints on relevant parameters (line width at 0.2 keV) and a slightly larger band!
• Smaller band prevents continuum study, but large effective area provides spectral ability on one pulse time-scale.
• Line centroids at better than 1 keV in 3.6s exposure!
• Variability study at pulse time scale -> trace accretion.
Conclusions

• The presented theoretical study furnishes a robust understanding of the cyclotron line flux dependency in different sources with different trend.
• We also demonstrated that in the case of 4U 0115+63, the observational result is doubtful.
• The use of archive data is limited and it would be important to discover more sources showing this effect.
• It is essential to use a facility with high-energy coverage as INTEGRAL and Suzaku (Astro-H and LOFT in the future).
• However, Suzaku normally does not provide extended coverage of an outburst as INTEGRAL.