X-raying Hot Massive Stars

Lidia Oskinova

Universität Potsdam ESAC 7 April 2011

Massive Stars and Stellar Winds

Initial mass $M_* > 15 M_{\odot}$ Main Sequence: OB-type Fast evolution (~Myr) -> trace star formation Hot. $T_{\rm eff} > 10\,000$ K \rightarrow

high surface brightness

Photon momentum \rightarrow acceleration of matter

Radiative acceleration larger than gravitation \rightarrow supersonic STELLAR WIND

nasaimages.org

The evolution of (very) massive stars

Evolution \leftarrow stellar wind (!)

- O and B type stars
- Luminous Blue Variables
- Wolf-Rayet (WR) stars

According to dominant spectral lines

WN (nitrogen) \rightarrow

WC (carbon) \rightarrow

WO (oxygen) \rightarrow SN

 Massive stars generate most of the ultraviolet radiation of galaxies: re-ionization of the Universe was largely due to first (super)massive stars Massive stars heat the dust and power infrared luminosities of galaxies Optical Infrared Composite **Infrared & X-rays** X-rays

IR: ESA/Herschel/PACS/SPIRE/J. Fritz, U. Gent; X-ray: ESA/XMM-Newton/EPIC/W. Pietsch; optical: R. Gendler

Massive stars & their SNe input metals and energy in the ISM

ን4

HST: 30 Dor in the LMC

Massive stars regulate evolution of star clusters

HST: Quintuplet cluster

• Massive stars are progenitors of black holes and neutron stars born in core-collapse SNe and/or γ -ray bursts

Massive stars are unique physical laboratories

- Nucleosynthesis
 Stellar interiors and evolution
- Interaction between radiation and matter
 Magnetic fields
- Stellar wind hydrodynamics
 Radiative transfer

X-ray astronomy is at the frontiers of observational astrophysics

Eight active missions:

perhaps the most observed band of EM spectrum from space

XMM-Newton 2000

Suzaku 2005

80

Chandra 1999

Spitzer Space Telescope • IRAC • MIPS The Brightest Star? NASA / JPL-Caltech / L. Oskinova (Potsdam Univ. , Germany)

Multiwavelength approach

- **IR**
- optical
- UV
- X-ray

Modern observational data - unprecedented quality.

New level of sophistication in modeling and theory is required to understand the data.

ssc2008-13a

X-ray emission from massive stars: Science objectives

- Physics: how X-rays are produced in massive stars?
- X-ray spectroscopy is a sensitive probe of stellar winds
- X-ray emission is a sensitive probe of stellar feedback

Massive star cluster Westerlund 2: Chandra NASA

Hot stars: radiatively driven stellar winds

Supersonic stellar winds are intrinsically unstable

Radius r/R_*

Shocks can also result from:

- Collision of streams
 in magnetically confined wind
- Collision of winds
 in binaries

Best quality X-ray spectra before year 2001 (ROSAT)

High-Resolution X-ray Spectra (XMM-Newton)

Line profiles

- * Overall spectral fitting → plasma model, abundances
 - Line ratios $\rightarrow T_{X}(r)$, spatial distribution
 - → velocity field, wind opacity

15

Analyses of the X-ray spectra of O-stars

Temperature

Range from 2 MK to 10 MK

Emission line profiles

- Broad; width scales with wind speed
- Similar accross the spectrum
 Clumped wind (Feldmeier etal. 2003)
 OR plasma is not in CIE (Pollock 2007)

Line ratios in He-like ions

- Formed close to the photosphere
- Temperature decreases outward

Abundances

Agree with wind abundances

X-rays can be explained by wind shocks (.

~100 papers based only on XMM data: e.g. Kahn etal. 01, Leutenegger etal. 2007, Naze etal. 2010, Raassen etal. 2005, Sana etal. 2004, Rakowski etal. 2006 ...

Stationary plasma in B-stars

- Wind speed is 1500 km/s
- But lines are narrow Comparable to instrumental profile!
- He-like ions: f/i line ratio probes distance to stellar photosphere

18

Wolf-Rayet type stars

Image courtesy of D.Ducros and ESA

X-ray view on single Wolf-Rayet Stars

- Not all WR stars emit X-rays.
- X-ray spectra of X-ray emitting WR are harder than spectra of O-stars
- Single WR carbon stars are X-ray quiet
- X-ray bright WR stars are binaries

Oskinova etal. 2003, Ignace etal. 2004, Skinner etal. 2010, Polock and Corcoran 2006, Gosset etal. 2005 ...

Glimpse at the pre core-collapse star WR142 (WO)

- Requires state-of-the art non-LTE models to fit observed optical and UV spectra. Such as PoWR code (Hamann et al. 2006)
- $T_*=160$ kK, $R_*=0.5R_{\odot}$, wind speed v=6000 km/s
- Our analysis indicates that star may be a FAST ROTATOR
 V_{rot}sin i =4000 km/s. Current mass ~10 M_o

XMM-Newton discovery of X-ray emission from a WO-type star

- X-rays are too hard to be explained by wind shocks
- Hint on the presence of magnetic field B(r=2R*) > 7 kG

Oskinova et al. (2009)

Mystery of X-rays from WR stars: Connection With Collapsars (?)

THE ASTROPHYSICAL JOURNAL, 494:L45–L48, 1998 February 10 © 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A.

ARE GAMMA-RAY BURSTS IN STAR-FORMING REGIONS?

23

BOHDAN PACZYŃSKI Princeton University Observatory, Princeton, NJ 08544-1001; bp@astro.princeton.edu Received 1997 June 23; accepted 1997 December 4; published 1998 January 9

ABSTRACT

The optical afterglow of the gamma-ray burst GRB 970508 (z = 0.835) was a few hundred times n than any supernova. Therefore, the name "hypernova" is proposed for the whole GRB/afterglow

"A very energetic explosion of a massive star is likely to create a ... fireball.... the inner core of a massive, rapidly rotating star collapses into a ~10 M_{\odot} Kerr black hole ... A superstrong ~10¹⁵ G magnetic field is needed to make the object ... a microquasar. Such events must be vary rare...to account for the ... GRBs"

Do we indeed observe in our Galaxy massive, magnetic, rapidly rotating stars on latest stages of their evolution ?

'Curiouser and curiouser!' cried Alice Carroll (1865)

- B-stars: not clear: magnetic fields, pulsation, winds.
- O-stars: more or less clear: winds.
- WR-stars: absolutely unclear (First spectrum : XMM large program 2010)

Massive star cluster Westerlund 2: Chandra NASA

Microclumping vs Macroclumping.

- Observations → wind is inhomogeneous. Theory → density contrast in the wind
- Microclumping: strong assumption -- size is smaller than the photon free path.
- Macroclumping: New "break through" motivated by X-ray spectroscopy: clumps are realistic, i.e. allowed not to be optically thin.
- Standard situation porosity, e.g dust: Particles are opaque: radiation cannot go through.
- Our work: how does macroclumping affect spectral analysis.

Macroclumping: $\tau_{clump} >= 1$

Microclumping: τ_{clump} << 1

The impact of *clumping* on empirical mass-loss rates

"Macroclumping" diagnostic line opt. *thick Porosity effect*:

 $\kappa_{\rm eff} < \kappa_{\rm smooth}$

Important consequence for mass-loss empirical estimates

Larger M

Mass-loss: key parameter to stellar evolution models & stellar feedback

UV diagnostics: PV resonance doublet

- P V resonance doublet becomes much weaker if macroclumping is taken into account
- This resolves the descrepancy between $\dot{M}\,$ from resonance line and $\rho^2\,$ diagnostics!

Observed and model lines of ζ Puppis (no fitting!)

Oskinova et al. (2006)

High-Mass X-ray Binaries as stellar wind probes

Compact object embedded in stellar wind of OBI star separation ~ 1R*
Stellar wind accretion on neutron star high Lx, power-law spectrum

- X-rays photoionize small part of stellar wind: recombination
- X-rays suffer absorption in stellar wind

Kretschmar etal. 2008, 2009, 2010, Kreykenbohm etal. 2010

Vela X-1

Fast temporal variability in X-rays - High Mass X-ray Binaries

- X-ray light curve: strong variability
- Optical donor star O-type supergiant
- $L_{\rm X} \approx 10^{35}$ erg/s accreting black hole

Accretion in clumped wind

4 L. Ducci et al.

Figure 1. Schematic representation of our clumpy wind model. d is the distance between the centre of the clump and the centre R_a is the accretion radius.

Stellar winds and X-ray spectroscopy

- Stellar wind is clumped
- Clumps are optically thick at some λ
- Clumps are most likely pancakes!
- Stellar mass loss rate is quite high

• New radiative transfer technique!

Massive star cluster Westerlund 2: Chandra NASA

38a

38b

Massive star forming region ON 2 and star cluster Berkeley 87

Image courtesy of L. M. Oskinova, R. A. Gruendl, Spitzer Space Telescope,

JPL, NASA

X-ray observations help to understand feedback

Spitzer, HST, CXO, LMC 30 Dor (Townsley+'06)

 Spatial correlation of YSO and diffuse X-ray emission • Chemical gradients • Evolution of kinetic energy input • X-ray dating of low-mass stars (perhaps high-mass, too?)

Cosmic archaeology

- Example of triggered secondary star formation with a large yield
- X-rays trace hot plasma: how it is connected with star formation?
- NGC 602 is at the edge of a SUPERGIANT SHELL. Largest structures in the interstellar medium

Supergiant shell in the SMC

Part of the supergiant shell in the X-rays

From massive stars to structuring galaxies

X-ray emission from massive stars: Summary

- Physics: how X-rays are produced in massive stars?
 - Non-stationary processes in stellar winds: shocks, magnetic fields...
- X-ray spectroscopy is a sensitive probe of stellar winds
 - Mass- loss from massive stars is prodigious $10^{-4...-7}\,M_{\odot}$ /yr
 - Poorely known: standard methods need to be improved
 - X-rays: Winds are not stationary and not homogeneous clumping

• X-ray emission is a sensitive probe of stellar feedback

- Massive stars strongly affect the ISM by radiative (UV photons) and mechanic (winds) energy input.
- How kinetic energy feedback affects the ISM and star formation ?