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 Massive Stars and Stellar Winds

Initial mass M∗ > 15M⊙

Main Sequence: OB-type

Fast evolution (~Myr)  trace
star formation

Hot. Teff > 10 000 K →
high surface brightness

Photon momentum →

acceleration of matter

Radiative acceleration larger
than gravitation →
supersonic STELLAR WINDnasaimages.org
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The evolution of (very) massive stars
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Evolution ←  stellar wind (!)

O and B type stars

Luminous Blue Variables

Wolf-Rayet (WR) stars

According to dominant spectral lines

WN (nitrogen) →

WC (carbon) →

WO (oxygen) →  SN

supernova remnant G292.0+1.8



03Massive stars: the cosmic engines

 Massive stars generate most of the ultraviolet radiation of

galaxies: re-ionization of the Universe was largely due to first

(super)massive stars

 Massive stars heat the dust and power infrared luminosities of

galaxies

IR: ESA/Herschel/PACS/SPIRE/J. Fritz, U. Gent; X-ray: ESA/XMM-Newton/EPIC/W. Pietsch; optical: R. Gendler
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Massive stars: the cosmic engines

  Massive stars & their SNe input metals and energy in the ISM

HST: 30 Dor in the LMC
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Massive stars: the cosmic engines

  Massive stars regulate evolution of star clusters

HST: Quintuplet cluster



06
Massive stars: the cosmic engines

  Massive stars are progenitors of black holes and neutron stars born

in core-collapse SNe and/or γ-ray bursts

Artist impression of γ-ray burst
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Massive stars are unique physical laboratories

Nucleosynthesis  Stellar interiors and evolution

Interaction between radiation and matter  Magnetic fields

Stellar wind hydrodynamics  Radiative transfer
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X-ray astronomy is at the frontiers of observational astrophysics

Eight active missions:

perhaps the most observed band of EM spectrum from space

Chandra 1999

XMM-Newton  2000

Suzaku  2005
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Multiwavelength approach

 IR

 optical

 UV

 X-ray

Modern observational

data - unprecedented

quality.

New level of

sophistication in

modeling and theory is

required to understand

the data.
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X-ray emission from massive stars: Science objectives

Physics: how X-rays are produced in massive stars?

X-ray spectroscopy is a sensitive probe of stellar winds

X-ray emission is a sensitive probe of stellar feedback
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1. How X-rays are produced in massive stars?

Massive star cluster Westerlund 2: Chandra  NASA
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OB stars are X-ray active (Einstein observatory 1978)

Hot stars: radiatively driven stellar winds

Supersonic stellar winds are intrinsically unstable
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Shocks can also result from:

  Collision of streams
in magnetically confined wind

  Collision of winds
in binaries

ShocksShocks

HeatingHeating

X-RaysX-Rays
Lucy Solomon (1970) ... Feldmeier etal (1997)



14
Best quality X-ray spectra  before year 2001 (ROSAT)

Energy (keV)

 ζ  Orionis

 ζ  Puppis
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High-Resolution X-ray Spectra  (XMM-Newton)
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 * Overall spectral fitting  plasma model, abundances

 * Line ratios                    TX (r), spatial distribution

 * Line profiles                 velocity field, wind opacity
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16 Analyses of the X-ray spectra of O-stars

Temperature
Range from 2 MK to 10 MK

Emission line profiles
Broad; width scales with wind speed
Similar accross the spectrum

Clumped wind  (Feldmeier etal. 2003)
OR plasma is not in CIE (Pollock 2007)

Line ratios in He-like ions
Formed close to the photosphere
Temperature decreases outward

Abundances
Agree with wind abundances

X-rays can be explained by wind shocks (..?)

  ~100 papers based only on XMM data:  e.g. Kahn etal. 01,
Leutenegger etal. 2007, Naze etal. 2010, Raassen etal. 2005,
Sana etal. 2004, Rakowski etal. 2006 ...
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Stationary plasma in B-stars
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X-ray plasma in B-stars
Close to the
photosphere
Stationary

Different from shocks
in O-type winds
Pulsations? Coronae?

Wind speed is 1500 km/s
But lines are narrow Comparable to
instrumental profile!
He-like ions: f/i line ratio probes
distance to stellar photosphere



 Wolf-Rayet type stars
Image courtesy of D.Ducros and ESA
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X-ray view on single Wolf-Rayet Stars

Not all WR stars emit X-rays.

X-ray spectra of X-ray emitting WR are harder than spectra of
O-stars

Single WR carbon stars are X-ray quiet

X-ray bright WR stars are binaries

Oskinova etal. 2003, Ignace etal. 2004, Skinner etal. 2010, Polock and Corcoran 2006, Gosset etal. 2005 ...

ζ  Pup (O-type) WR 1 (WN) WR 114 (WR carbon)
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Glimpse at the pre core-collapse star WR142 (WO)
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Requires state-of-the art non-LTE models to fit observed optical

and UV spectra. Such as PoWR code (Hamann et al. 2006)

T* =160 kK, R* =0.5R , wind speed v=6000 km/s

Our analysis indicates that star may be a FAST ROTATOR 

Vrot sin i =4000 km/s. Current mass ~10 M
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XMM-Newton discovery of X-ray emission from a WO-type star

X-rays are too hard to be explained by wind shocks

Hint on the presence of magnetic field B(r=2R* ) > 7 kG

WR142

Oskinova et al. (2009)
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Mystery of X-rays from WR stars: Connection With Collapsars (?)

’’A very energetic explosion of a massive star is likely to create a ... fireball....
the inner core of a massive, rapidly rotating star collapses into a ~10 M  Kerr
black hole ... A superstrong ~1015 G magnetic field is needed to make the
object ... a microquasar. Such events must be vary rare...to account for the ...
GRBs’’

Do we indeed observe in our Galaxy massive, magnetic, rapidly
rotating stars on latest stages of their evolution ?
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Physics of X-ray emission from massive stars

‘Curiouser and curiouser!’ cried Alice
Carroll (1865)

B-stars: not clear: magnetic fields,
pulsation, winds.

O-stars: more or less clear: winds.

WR-stars: absolutely unclear (First
spectrum : XMM large program 2010)
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2. X-rays diagnostics of stellar wind

Massive star cluster Westerlund 2: Chandra  NASA



Image courtesy of D.Ducros and ESA
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Microclumping vs Macroclumping.

Observations  wind is inhomogeneous. Theory  density
contrast in the wind

Microclumping: strong assumption -- size is smaller than
the photon free path.

Macroclumping: New "break through" motivated by X-ray
spectroscopy: clumps are realistic, i.e. allowed not to be
optically thin.

Standard situation porosity, e.g dust: Particles are opaque:
radiation cannot go through.

Our work: how does macroclumping affect spectral
analysis.



28Macroclumping: τclump  >= 1



29Microclumping: τclump  << 1



The impact of clumping  on empirical mass-loss rates
‘‘Macroclumping’’
diagnostic line opt. thick

Porosity effect :
κeff  < κsmooth

Important
consequence for
mass-loss empirical
estimates

Larger Ṁ by factor of
a few

Mass-loss: key
parameter to stellar
evolution models &
stellar feedback
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UV diagnostics: PV resonance doublet

microclumping

micro- &  macroclumping
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P V resonance doublet becomes much weaker if macroclumping
is taken into account

This resolves the descrepancy between Ṁ  from resonance line
and ρ2  diagnostics!
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X-ray diagnostics: X-ray emission lines

clumped wind

smooth
wind

same Ṁ
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Model emission lines

Wind opacity for X-ray drastic-

ally reduced by clumping

Opacity becomes "grey"

⇓

Similar line profiles accross

the spectrum
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Observed and model lines of ζ  Puppis (no fitting!)
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34
High-Mass X-ray Binaries as stellar wind probes

Compact object embedded in stellar wind of OBI star

separation ∼  1R*
  Stellar wind accretion on neutron star

high LX , power-law spectrum

  X-rays photoionize small part of stellar wind: recombination

  X-rays suffer absorption in stellar wind
 Vela X-1

Kretschmar etal. 2008, 2009, 2010, Kreykenbohm etal. 2010



35Fast temporal variability in X-rays - High Mass X-ray Binaries

 X-ray light curve: strong variability

 Optical donor star O-type supergiant

 LX ≈ 1035 erg/s - accreting black hole
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Accretion in clumped wind
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Stellar winds and X-ray spectroscopy

Stellar wind is
clumped

Clumps are
optically thick at
some λ
Clumps are
most likely
pancakes!

Stellar mass
loss rate is
quite high

 New radiative transfer technique!
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3. X-rays diagnostics of massive star feedback

Massive star cluster Westerlund 2: Chandra  NASA
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S308 wind blown bubble around WR6, DSS



38b

top: XMM-Newton image (Chu etal. 2003)
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X-ray observations help to understand feedback
Spitzer, HST, CXO, LMC 30 Dor (Townsley+’06)

 Spatial correlation of YSO and diffuse X-ray emission  Chemical

gradients  Evolution of kinetic energy input  X-ray dating of low-mass

stars (perhaps high-mass, too? )
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Cosmic archaeology

 NGC 602 a massive star cluster (HST image)

 Example of triggered secondary star formation with a large yield

 X-rays trace hot plasma: how it is connected with star formation?

 NGC 602 is at the edge of a SUPERGIANT SHELL. Largest
structures in the interstellar medium



41a
Supergiant shell in the SMC



41b
Part of the supergiant shell in the X-rays
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From massive stars to structuring galaxies

 Supergiant shells are formed by massive star
feedback?
 They provide chimneys for hot gas to escape to

 intergalactic space
 X-ray trace this hot gas and stellar feedback
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X-ray emission from massive stars: Summary

  Physics: how X-rays are produced in massive stars?

Non-stationary processes in stellar winds: shocks, magnetic

fields...

 X-ray spectroscopy is a sensitive probe of stellar winds
Mass- loss from massive stars is prodigious 10−4...−7 M⊙  /yr

Poorely known: standard methods need to be improved

X-rays: Winds are not stationary and not homogeneous -

clumping

  X-ray emission is a sensitive probe of stellar feedback
Massive stars strongly affect the ISM by radiative (UV photons)

and mechanic (winds) energy input.

How kinetic energy feedback affects the ISM and star

formation ?


