Magnetic star-disk interaction in young stars

Jérôme Bouvier Institut de Planétologie et d'Astrophysique de Grenoble

Classical T Tauri Stars

- pre-main sequence
- low mass (M < 2 M_{\odot})
- accretion disk
- optically visible

Main observable characteristics

- Li I (6708Å) in absorption
- broad emission lines
- spectroscopic and photometric variability
- UV, optical and IR excesses
- strong magnetic fields (~ 2 kG)
- X-ray emission

Hertzsprung-Russell Diagram

Outline

- Accretion disks : from boundary layers to magnetospheric accretion
- > Magnetic field measurements in young stars
- Magnetically-controlled star-disk interaction : obs. and models
- The time variability of accretion/ejection : inner disks warps, funnel flows, accretion shocks
- Impact on angular momentum evolution, disc lifetimes and planet formation

A short historical note : from boundary layer accretion to magnetospheric accretion

Accretion disks

Accretion disks in young stars account in a simple and elegant way for their exotic properties, most notably their UV and IR continuum excesses.

Boundary layer accretion ?

Periodic modulation of the UV and optical excesses indicative of "hot spots" at the stellar surface.

Hot spot : f~1%, T~8000K

$$\rightarrow$$
 Luminosity ~ 1/₂ L_{acc}

Accretion shock at the base of a magnetically-channeled accretion flow ?

Bouvier & Bertout 1989

The angular momentum problem

- Accretion of high angular momentum material from the disk is expected to spin up the star at V_{rot}~V_{break-up} in ~10⁶ yr !
- T Tauri stars are slow rotators V~10-25 km/s = 0.1 V_{break-up}
- Accreting young stars rotate on average slower than nonaccreting ones : braking linked to the accretion process ?
- Magnetically-controlled accretion to get rid of angular momentum excess? (cf. X-ray binaries, Gosh & Lamb 1979)

Magnetospheric accretion

Magnetic fields in young stars

Direct magnetic field measurement from Zeeman broadening

$$\Delta \lambda = \frac{e}{4\pi m_e c^2} \lambda^2 g B = \pm 4.67 \times 10^{-7} \lambda^2 g B \text{ m Å kG}^{-1}$$

Zeeman-Doppler imaging from spectropolarimetric measurements Vector magnetic field

Vector magnetic field

Unpolarized line profile : brightness map (Doppler imaging)

Circularly polarized line profile : magnetic map : intensity + topology (Zeeman-Doppler imaging)

Donati et al. 1997

ZDI : BP Tau and V2129 Oph

• ZDI analysis of 2 accreting T Tauri stars

Donati et al. 2007, 2008

Surface magnetic map of BP Tau

Radial magnetic flux Azimuthal magnetic flux Meridional magnetic flux 0.50 0.50 0.50 Feb.06 0.25 0.75 0.75 0.75 0 0.25 0.25 0.00 0.00 0.00 Radial magnetic flux Azimuthal magnetic flux Meridional magnetic flux 0.50 0.50 0.50 **Dec.06** 0.75 0.75 0.25 0.75 0.25 0 0.25 0.00 0.00 0.00 Donati et al. 2008

Magnetospheric accretion on the cTTS BP Tau 1247

Magnetic structure of CTTS

1.2 kG dipole + 1.6 kG octupole

0.35 kG dipole + 1.2 kG octupole

BP Tau (Donati et al. 2008; Gregory et al. 2008) V2129 Oph (Donati et al. 2007; Jardine et al. 2008) Magnetospheric star-disc interaction in young stars

Star-disk magnetic coupling

2D MHD simulation of disk accretion onto an aligned dipole

Zanni et al. 2009

$$M_{star} = 0.8M_{o}; R_{star} = 2R_{o}$$

 $B_{dipole} = 800 G; dM_{acc}/dt = 10^{-8} M_{o}/yr$

,mpg)

The observational evidence for magnetospheric accretion

- Inner disk truncation
 - Funnel flows
 - Accretion shocks

Inner disk truncation

Disk truncation radius

 The disk is truncated at a radius where the magnetic field pressure balances the ram pressure of the accreting material

$$\frac{R_T}{R_*} = \frac{B_*^{4/7} R_*^{5/7}}{\dot{M}^{2/7} (2GM_*)^{1/7}} = 7.1 B_3^{4/7} \dot{M}_{-8}^{-2/7} M_{0.5}^{-1/7} R_2^{5/7},$$

• For typical values of B~1 kG, M_{acc} ~10⁻⁸ M_o /yr

Dusty disk inner radius

Interferometric measurements in the near-IR

Gaseous disk inner radius

• Cautionary note : keplerian rotation is assumed in the inner disk

Funnel flows

Accretion funnel flows

• Deep, high-velocity redshifted absorption components in the emission line profiles

Line profile modelling

• Radiative transfer in a dipolar geometry

Hartmann et al. 1994

Hybrid line profile models : funnel flows + disk wind

Kurosawa et al. 2006

Hybrid H α line profile models : funnel flows + disk wind

 $\beta=0.5$

 $\beta = 0.2$

Edwards et al. 1994

Accretion shocks

Rotational modulation by hot spots

Accretion onto an inclined dipole (θ =30, 60, 90 deg)

Romanova et al. 2004

Rotational modulation by hot spots

Accretion onto an inclined dipole (θ =30, 60, 90 deg)

Romanova et al. 2004

UV spectrum from accretion shock

Accretion shock models ۲ reproduce the continuum UV excess spectrum

$$\dot{M} = 10^{-8} \ {\rm M_{\odot}yr^{-1}}$$

$$f \sim 0.001 - 0.01$$

Gullbring et al. 2000

X-ray spectroscopy

- In most T Tauri stars, X-ray comes from coronal emission
- However, in a handful of them, X-ray emission seems to originate from the accretion shock at the stellar surface

•Chandra X-ray spectrum reveals unusually high plasma density ($n_e \sim 10^{12} \text{ cm}^{-3}$) and a soft spectrum (T $\sim 10^6$ K) •Consistent with an accretion shock near the stellar surface at the free-fall velocity of the gas ($V_{\rm ff} \sim 200 \text{ km/s}$)

Kastner et al. 2002

The time domain : rotational modulation and intrinsic time variability of the accretion/ ejection process

Inner disk warps : AA Tau

Best seen in high inclination system : AA Tau; $i \sim 75$ deg.; Prot = 8.2 days

AA Tau spectro-polarimetry

2-3kG dipole, tilted at ~20 deg onto the rotation axis

AA Tau : $M \sim 0.7$ Mo, $\log(Macc) = -9.2$

Donati et al. 2010

1357

The magnetic pole is located at about the same azimuth as the disk warp that produces the eclipse

Both a cold (magnetic) spot and a hot (accretion) spot are found close to the magnetic pole

იიბ

Line profile variability from inclined magnetospheres

Kurosawa, Romanova, Harries 2008

3D MHD simulations of accretion onto an inclined dipole 3D radiative transfer of rotationally-induced line variability (e.g. Paβ)

Inclined magnetospheres : AA Tau

Is AA Tau a unique object?

COROT light curves : NGC 2264

AA Tau-like COROT light curves

Periods between 4 and 10 days

Alencar et al. 2010

Rapid (~rotation cycle) and significant variations of the occulting material.

Corot light curves vs. disc evolution

97 CTTS with IRAC [3.6-8]µm color

Alencar et al. 2010

The Corot light curve morphology reflects the evolution of the disk

25% of CTTS exhibit AA Tau-like lightcurves

Assuming random inclinations, this fraction yields : h/R~0.3 at the inner disk edge

(while flared α-disks have h/R≤0.1)

Implications for planet formation and migration

Inner disk warps

induced by the interaction with an inclined magnetosphere

Halting the planet migration ?

"Hot Jupiters" (or Saturns...)?

Star-planet interacting magnetospheres ?

MHD simulations of the star-planet magnetospheric interaction

Cohen et al. 2009

Main sequence system: B(star) = 5 G B(planet) = 2 G

Much stronger fields to be expected at 1-10 Myr (~ 0.1-1.0 kG)

Impact on planet formation ?

1235 planetary candidates from Kepler

Borucki et al. 2011

Angular momentum evolution, disc lifetimes and planet formation timescale

Angular momentum regulation

The magnetic star-disc interaction regulates the angular momentum of the star.

e.g., **accretion-powered magnetic winds** carry away angular momentum, thus braking the star

Matt & Pudritz 2005

Observational evidence for **« Disc locking » :** as long as the star accretes from its disc, it evolves at a constant angular velocity

Cieza & Baliber 2007

NGC 2264 2 Myr (Lamm et al. 2005)

NGC 2362 5 Myr

NGC 2547 40 Myr

Pleiades 100 Myr (compilation)

NGC2516 150 Myr

M34 200 Myr

The rotational distributions of young stars

Monitor Project (Aigrain et al.)

Rotation period measurements for hundreds of stars in the mass range 0.1-1.0Mo in PMS and ZAMS clusters over the age range 1-200 Myr

Provides unique constraints on PMS and early ZAMS angular momentum evolution

Irwin & Bouvier 2009

The rotational evolution of solar-type stars

Rotational evolution from 1 Myr to 10 Gyr : observations vs. models

Lithium in exoplanet hosts

Solar-type stars with massive planets have lower Li abundances than solar-type stars without massive planets

Israelian et al. 2009; Gonzalez 2008

Enhanced Li depletion in exoplanet hosts

A signature of the early rotational evolution of exoplanet hosts?

Rotation, lithium, and planet formation

Suggests that long lived disks (≥ 5 Myr) are required for planet formation

Conclusions

The magnetic star-disc interaction seems to be ubiquitous in young stars, and impacts on :

- The structure of the inner disk, producing a nonaxisymmetric warp (with consequences on radiative transfer, chemical evolution, disk dissipation, etc.)
- Planetary migration via the development of a magnetospheric cavity (size ~ a few stellar radii)
- Angular momentum transfer that dictates the rotational evolution of young stars
- Different PMS rotational histories may result in lithium dispersion on the main sequence