# Tracing the Evolution of Dust in Protoplanetary Disks

### Isa Oliveira

Sterrewacht Leiden

Klaus Pontoppidan, Bruno Merín, Ewine van Dishoeck, Johan Olofsson, Jean-Charles Augereau, Loredana Spezzi, Fernando Comerón, Vincent Geers, Joanna Brown





# Serpens

- One of the most active lowmass star-forming complexes
- High SFR (5.7x10<sup>-5</sup> M<sub>☉</sub>yr<sup>-1</sup>)
- Few hundred YSOs, great variety (with mid-IR spectroscopy)
- Clustered and field population
- Complementary to Taurus (Kenyon et al. 1994, Kenyon & Hartmann 1995, Furlan et al. 2006) Possibility to study the

parameters that drive the evolution of protoplanetary disks in the same nursery

| Comparison with Other Regions |          |               |
|-------------------------------|----------|---------------|
|                               | Mean Age | Disk Fraction |
| Serpens                       | ~3       | -             |
| Taurus                        | ~2       | ~60%          |
| Upper Scorpius                | ~5       | ~17%          |
| η Chamaeleontis               | ~6       | ~40%          |
|                               |          |               |

In addition: c2d sample with ~100 YSOs in 5 clouds



















→ Difference in mean age is not reflected in concurrent evolution of average surface dust size







#### **Spectral Decomposition**















Scenario consistent with evidence from Solar System (small particles after formation of big particles)

Oliveira et al. 2010, ApJ 714, 778

## Summary

- Statistical trends for hundreds of YSOs → constraints on important processes for evolution of disks
  - No seen effects on disk surface characteristics from environment, mean cluster age, stellar mass (K-M stars) ...
- Equilibrium of processes of growth and destruction maintains a small dust population in the disk surface even for older, or flatter, disks
- No strong evidence of increase in crystallinity fraction with mean age in surface layers
  - Equilibrium reached quickly (~1 Myr) and lasting essentially until disks dissipate

→ Pointing to different evolution of surface layers and midplane, even though the populations are connected through vertical mixing (perhaps radial mixing occurs at different ratios?)