		Conclusions	

The Lambda Orionis Star Forming Region Spectroscopic Characterization

A. Bayo, D. Barrado, M. Morales-Calderón, N. Huélamo, B. Stelzer, H. Bouy

ESAC-Madrid

September 2, 2010

Outline

1

3

Introduction

- Star Formation Theory
- The Lambda Orionis Star Forming Region
- Stellar Spectral Classification
- Goals

The data

- Photometry and X-rays
- Spectroscopy

The Methodologies

- SED analysis
- Spectral Type determination
- Rotational velocities estimations
- Activity and accretion
- Youth indicators

Results

- Youth indicators
- Temperature scale
- Activity and accretion
- Disks Properties
- The IMF of Collinder 69

Conclusions

Future Work

Introduction			Conclusions	
Star Format	ion Theory			

Introduction			Conclusions	
Star Formativ	an Theory			

Barrado y Navascués et al. (2009)

- A. ~8-10 Myr ago, the λ Ori region was composed of a starless, roughly linear string of dense molecular clouds.
- B. Over the next few Myr, stars began to form in the densest portions of this cloud chain. 6 Myr ago, a dozen OB stars formed near λ Ori's present-day position while lowmass stars formed in all productive areas of the star-forming complex.
- C. ~1 Myr ago, one of the O stars became a supernova. The blast quickly dispersed all of the parent core, creating the molecular ring, the large HII region, and the nearby HI structures.
- D. Today we see the fossil distribution of young stars within the molecular ring, as well as the remnants of the B30 and B35 clouds within the ionized region.

Introduction		Conclusions	
M dwarfs			

- $T_{\rm eff}$ range from ~ 4500 K down to ~ 2000 K
- Molecular bands of TiO (VO for M7 and later); H₂O, CO, FeH
- Atomic lines of Ca II, Na I and K I

Introduction		Conclusions	
L dwarfs			

- Mixture of stars and BDs
- $T_{\rm eff} \sim 2100 1500 \, {\rm K}$
- Weakened TiO and VO bands (disapp. L5-L6)
- Strengthened FeH, CrH, CaH
- Broadened resonance lines Rb and Cs and K I doublet
- Intense H₂O bands in the IR

Introduction ○○○○●○		Conclusions	
T dwarfs			

- Brown Dwarfs
- $T_{\rm eff} \sim 1500 1200 \, {\rm K}$
- CH₄ absorption bands
- H_2O and H_2 absorptions \Rightarrow Bluer near-IR colours than L dwarfs

Introduction ○○○○○●		Conclusions	
Aims			

- Spectroscopically confirm the lowest mass members of the three associations (including Brown Dwarfs and IPMOS).
- Build complete census for the three regions.
- Relate properties of individual sources (acc. rates, etc.) with three different environments (ages).
- Build a very complete IMF for Collinder 69 from \sim 20 M $_{\odot}$ down to the planetary mass domain (shared mechanism of formation for low mass domain?).
- "Test" the Supernova hypothesis.

	The data ●○		Conclusions	
Photometric	and X-ray su	rveys		

	The data ●○		Conclusions	
Photometric	and X-ray su	rveys		

	The data ●○		Conclusions	
Photometric	and X-ray su	rveys		

	The data ●○		Conclusions	
Photometric	and X-ray su	rveys		

	The data ●○		Conclusions	
Photometric	and X-ray su	rveys		

	The data ●○			Conclusions			
Photometric and X-ray surveys							

	The data ●○			Conclusions			
Photometric and X-ray surveys							

Complete analysis in C69 on-going analysis in B30 and B35

	The data ●○			Conclusions			
Photometric and X-ray surveys							

	The data ●○			Conclusions		
Photometric and X-ray surveys						

LOSFR. Spectroscopic Characterization

	The data ○●			Conclusions		
Spectroscopic surveys: C69						

Date	Observatory/Telescope/Instrument	Resolution	WL coverage	# Sources
Newsystem 0.5, 0000	Maxima Kala (Kalak I / I DIO	0050	0405 7000 Å	00361760
November 2-5, 2002	Mauna Kea / Keck I / LRIS	~2650	6425-7692 A	12
November 2-5, 2002	Mauna Kea / Keck I / LRIS	~ 950	6250–9600 Å	29
December 11-14, 2002	Las Campanas / Magellan Baade / MIKE	~11250	4430–7250 Å	14
March 9-11, 2003	Las Campanas / Magellan II / B&C	~2600	6200–7825 Å	2
March 9-11, 2003	Las Campanas / Magellan II / B&C	~800	5000–10200 Å	3
November 22-25, 2005	CAHA / 3.5m / TWIN	~1100	5600–10425 Å	5
November 20-23, 2006	CAHA / 3.5m / TWIN	~1100	5700–9900 Å	8
Nov. 30 - Dec. 11, 2007	CAHA / 2.5m /CAFOS	~600	6200–10350 Å	37
January 5, 2008	Paranal / UT2/FLAMES	~8600	6438–7184 Å	40

Date	Observatory/Telescope/Instrument	Resolution	WL coverage	# Sources observed
December 22-23, 2004	Mauna Kea / Keck II / NIRSPEC	~2000	1.143–1.375 μm	4
December 9, 2005	Mauna Kea / Keck II / NIRSPEC	~2000	1.143–1.375 μm	9
January 9-11, 2007	La Silla / NTT / SOFI	~950	0.950-2.500 μm	2
November 10, 2008	Mauna Kea / SUBARU /IRCS	~200	1.400–2.500 µm	8

	The Methodologies ●○○○○○	Conclusions	
VOSA			

152	Spanish Virtual Observatory - Theoretical models	Funded by
svo	VOSA	PINETURIO DE CEINCIA E INNOVIACIÓN
	Sessions Upload files Coordinates VO Phot. Model Fit HR Diag. Save Results Help Logout	
	Upload your own data file (max size=500Kb) It must correspond to the required data format Please, include a description for your file, it is required	
	File to uplead: Browse Description: File type: C Fuxes C Magnitudes	
	Uploaded files	
	Date Filename Descrip Action \$1008 11:45:00 fohren_nput_Inal_ences_consided acci All ences revised Show Rathews Debite	
	LOri001	
	Position: (83.446583,9.9273611) Distance: 400. pc A,: 0.36209598	
	Filter: CFHT_R CFHT_I 2MASS_J 2MASS_H 2MASS_Ke IRAC_H IRAC_I2 IRAC_I3 IRAC_I4	
	Menter 3004 0 42.60 12.310 100/m 24.100 300/m 49.110 300/m 49.110 300/m 49.110 300/m 49.110 300/m 14.100/m	
	LOri002	
	Position: (84.043167,10.148583) Distance: 400. pc A ₂ : 0.36209598	
	Filler: CFHT_R CFHT_I 2MA95_J 2MA95_H 2MA95_Ks IRAC_I1 IRAC_I2 IRAC_I3 IRAC_I4 A	
	Flax: 1.170918-14 1.204422e-14 1.114782e-14 0.883020e-15 4.178920e-16 7.207458e-16 2.583730e-16 1.122409e-16 3.434408e-17 ΔF: 4.583571e-17 4.817587e-17 1.070191e-16 8.880979e-17 3.175070e-17 8.645947e-10 3.107752e-10 4.04458e-10 1.090170e-10	

e data

The Methodologies

Results

Conclusions

Future Work

Molecular Bands

Kirkpatrick et al. (1999), Martin et al. (1999), Reid & Cruz (2002)

	The Methodologies	
	00000	

Conclusions

Future Work

Molecular Bands

	The Methodologies ○○●○○○	Conclusions	

Templates

LOSFR. Spectroscopic Characterization

	The Methodologies ○○●○○○	Conclusions	

Templates

LOSFR. Spectroscopic Characterization

		The Methodologies	Conclusions	
Rotational ve	locities			

	The Methodologies	Conclusions	
Emission lines			

	The Methodologies	Conclusions	
Emission lines			

	The Methodologies ○○○○●○	Conclusions	
Emission lines			

	The Methodologies	Conclusions	

Emission lines

		The Methodologies ○○○○●○	Conclusions	
The factor is a line of	_			

	The Methodologies ○○○○●○	Conclusions	
- · · ·			

Emission lines

	The Methodologies	Conclusions	
	00000		

Alkali

	The Methodologies	Conclusions	
	000000		

Alkali

	The Methodologies ○○○○●	Conclusions	
Alleali			

		Results ●oooooo	Conclusions	
Lithium vs T_{eff}				

C69: More than 30 new members (~175 spect. confirmed members)

		Results o●ooooo	Conclusions	
Alkali variab	ility			

		Results o●ooooo	Conclusions	
Alkali variabi	lity			

		Results ○○●○○○○	Conclusions	
T_{eff} scale				

		Results ○○○●○○○	Conclusions	
Accretion				

		Results ○○○●○○○	Conclusions	
Accretion				

		Results ○○○○●○○	Conclusions	
Accretion				

		Results ○○○○●○	Conclusions	
Disks Proper	ties			

Disk and diskless populations unevenly distributed

Stellar disk fraction 28.5%

Sub-stellar disk fraction >30%

Barrado y Navascués et al. (2004) 40% Scholz et al. (2007) 37.9% for Upper-Sco

Accretors fraction

sub-stellar 18%

Scholz et al. (2007) 31% for Upper Sco (low-mass and sub-stellar)

		Results ○○○○○●	Conclusions	
IMF of Colling	der 69			

		Results ○○○○○●	Conclusions	
IMF of Colline	der 69			

		Conclusions	
Conclusions			

- 33 new members spectroscopically confirmed.
- Complete census of ~175 spectroscopicaly confirmed members plus 60 photom. probable members.
- Physical parameters derived for the whole sample: T_{eff}, L_{bol}, Mass.
- Physical parameters derived for the spectroscopic sample: Spectral Type, Hα and Li I equivalent width, accretion rates, etc.
- Temperature scale.
- Age study: upper limit of 20 Myr, optimal 5 Myr.

		Conclusions	
Conclusions			

- Study of the disks properties:
 - Spatial distribution (inconsistent with SN Hypothesis, D'Orazi et al. 2009 solar metallicity for DM24, posible sub-solar for a member of the OB1b).
 - Stellar and sub-stellar disk fraction.
 - Accretors fraction.
 - Relation H α mid-IR excess.
- $\bullet\,$ One of the most complete IMF reported so far (from ${\sim}20~M_{\odot}$ down to 7 $M_{Jup})$
- No evidence of mass segregation
- Mass fraction limit?

		Conclusions	Future Work
Future Work			

- Confirm end IMF Collinder 69
- Complete optical survey analysis for B35 an B30
- Complete X-ray analysis for B35 an B30
- Build final census (no bias) for the two associations (B35, B30)
- Derive disks fractions for B35 and B30 and relate with age and environment (C69)
- Build complete IMF for B35 and B30 and compare with C69 (age/environmental differences?)

	The Methodologies	Conclusions	Future Work

THANK YOU!!!