

An Internal Shock Model for the Variability of Blazar Emission

Markus Böttcher

Ohio University

Athens, OH, USA

ASTROPHYSICAL INSTITUTE

OHIO UNIVERSITY

ESAC, Villanueva de la Cañada, Spain, Feb. 4, 2010

- Class of AGN consisting of BL Lac objects and gamma-ray bright quasars
- Rapidly (often intra-day) variable

Blazar Variability: Example: The BL Lac Object 3C66A

(Böttcher et al. 2009)

Optical Variability on timescales of a few hours.

Blazar Variability: Variability of PKS 2155-304

(Costamante et al. 2008)

VHE γ-ray and X-ray variability often closely correlated

VHE γ-ray variability on time scales as short as a few minutes!

Spectral Variability

Hardness-Intensity Diagrams

(Mrk 421; Takahashi et al. 1996)

- Class of AGN consisting of BL Lac objects and gamma-ray bright quasars
- Rapidly (often intra-day) variable
- Strong gamma-ray sources

Blazar Spectral Energy Distributions (SEDs)

- Class of AGN consisting of BL Lac objects and gamma-ray bright quasars
- Rapidly (often intra-day) variable
- Strong gamma-ray sources
- Radio jets, often with superluminal motion
- Radio and optical polarization

Blazar Classification

10²¹

10¹⁷ 10¹⁹

v [Hz]

1011

 10°

10¹³

1015

10²³

1025

High-frequency peaked BL Lacs (HBLs):

Low-frequency component from radio to UV/X-rays, often dominating the total power

High-frequency component from hard X-rays to highenergy gamma-rays

Leptonic Blazar Models

Spectral Variability

Hardness-Intensity Diagrams

Interpretation of Spectral Variability in Blazars

If energy-dependent (spectral) time lags are related to energy-dependent synchrotron cooling time scale:

 $d\gamma/dt = -v_0\gamma^2$ with $v_0 = (4/3) c \sigma_T u'_B$ $t_{cool} = \gamma/|d\gamma/dt| = 1/(v_0\gamma)$ and

 $v_{sy} = 3.4^{*}10^{6} (B/G) (D/(1+z)) \gamma^{2} Hz$

=>
$$\Delta t_{cool} \sim B^{-3/2} (D/(1+z))^{1/2} (v_1^{-1/2} - v_2^{-1/2})$$

=> Measure time lags between frequencies v_1 , v_2 \rightarrow estimate Magnetic field (modulo D/[1+z])!

The simplest version assumes that the emission region is spherical ...

Problems of spherical, homogeneous models

If the entire SED is produced by the same electron population, variability at all frequencies should be well correlated – but ...

Problems of spherical, homogeneous models

Cross-correlations between frequency bands and time lags do not show a consistent picture

The Internal Shock Model for Blazars (Böttcher & Dermer 2010)

The central engine ejects two plasmoids (a,b) into the jet with different, relativistic speeds (Lorentz factors $\Gamma_b >> \Gamma_a$)

 γ_2 from balance of acceleration and synchr. Cooling rate γ_1 from normalization to overall energetics

Time-Dependent Electron Distributions

Competition of injection of a power-law distribution of relativistic electrons with radiative cooling

At any given time $t_{em}(x) = time$ elapsed since the shock has crossed a given point x

Time-dependent electron distribution:

$$d\gamma/dt = -v_0\gamma^2$$

•
$$t_{cool} = \gamma / |d\gamma / dt| = 1 / (v_0 \gamma)$$

→ Spectral break at γ_c , where $t_{em}(x) = t_{cool}$

 $\gamma_{\mathsf{min}} = (\gamma_1^{-1} + \nu_0 \mathbf{t})^{-1}$

Radiation Mechanisms

$$\nu F_{\nu}(\epsilon, t_{\rm obs}) = \frac{D^4 \pi R^2}{d_L^2} \int_{\overline{x}_{\rm min}}^{\overline{x}_{\rm max}} \overline{\epsilon} \, j_{\overline{\epsilon}}(\overline{x}, \overline{t}_{\rm x,em}) \, d\overline{x}$$

1) Synchrotron
$$B_{f,r} = \sqrt{8\pi r \epsilon_B \left(\overline{\Gamma}_{f,r}^2 - \overline{\Gamma}_{f,r}\right) n'_{a,b} m_p c^2}$$

Delta-function approximation for synchrotron emissivity:

$$j_{\overline{\epsilon},\mathrm{sy}} = \frac{c \,\sigma_T \, B^2 \,\overline{\epsilon}}{48\pi^2 \, b^2 \,\gamma_{\mathrm{sy}}} \, n_e(\gamma_{\mathrm{sy}})$$

 $=> v F_v^{sy} (t_{obs})$ can be calculated fully analytically!

Radiation Mechanisms (contd.)

2) External-Compton

Delta-function approximation for Compton cross section:

$$\frac{d\sigma}{d\epsilon_c \, d\Omega_c} \approx \sigma_T \,\delta(\epsilon_c - \gamma^2 [1 - \beta \overline{\mu}_c] \epsilon_s) \,\delta(\Omega_c - \Omega_e) \, H(1 - \gamma \epsilon_s [1 - \beta \overline{\mu}_c]).$$

Assume mono-energetic, isotropic external radiation field

=>
$$vF_v^{EC}$$
 (t_{obs})
can be calculated fully analytically!

Radiation Mechanisms (contd.)

3) Synchrotron-Self Compton

Emissivity with delta-function approximation for the Compton cross section:

$$j_{\overline{\epsilon},\mathrm{SSC}}(\overline{x},\overline{t}_{\mathrm{x,em}}) \approx \frac{c \,\sigma_T \,m_e c^2}{8\pi} \overline{\epsilon}^{1/2} \int\limits_{4\pi} d\overline{\Omega}_s \int\limits_{0}^{1/(\overline{\epsilon}[1-\overline{\mu}_c])} d\overline{\epsilon}_s \sqrt{1-\overline{\mu}_c} \,\frac{\overline{n}_{\mathrm{ph}}(\overline{\epsilon}_s,\overline{\Omega}_s,\overline{x},\overline{t}_{\mathrm{x,em}})}{\overline{\epsilon}_s^{1/2}} \,n_e(\gamma_c,\overline{x},\overline{t}_{x,em})$$

 $\Rightarrow n_{ph}^{sy}(\varepsilon_s, x, t) =$

Integral over the retarded synchrotron photon distributions from all shocked regions of the jet!

n_{ph}^{sy} (ε_s, x, t) can be calculated fully analytically => Two integrations to be done numerically.

Parameters / SED characteristics typical of FSRQs or LBLs

Snap-shot SEDs and time-averaged SED over 30 ksec

Light Curves

Discrete Correlation Functions

Varying the External Radiation Energy Density

SED Characteristics

Varying the External Radiation Energy Density

DCFs / Time Lags

Varying the External Radiation Energy Density

SED Characteristics

Varying the External Radiation Energy Density

DCFs / Time Lags

Reversal of time lags!

Physics & Astronomy

- We developed a semi-analytical internal shock model for blazars: Synchrotron + EC analytical; SSC: 2 numerical integrations.
- Appropriate to reproduce SEDs of FSRQs and LBLs
- Predicts optical lead before higher-energy emission by 1 – 2 hours
- Magnitude and sign of time lags sensitive to various poorly constrained parameters.

