

Solar corona:open questions < MP and how the "Solar Orbiter" mission will help us to solve them

Jörg Büchner,

Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau, Germany TSSSP group / collaboration: E. Adamson (now MPS Katlenburg-Lindau) M. Barta (MPS, now Ondrejov Observatory) A.Otto (University of Fairbanks) J. Santos (MPS, now Sao Jose dos Campos)

J. Büchner

The solar corona - open questions

MPS moves 2014 to Göttingen

MPS building in Göttingen --> (since 1973 MPAe with Ian Axord as director/ since 2003 MPS,below)

J. Büchner

The solar corona - open questions

January 2014: MPS in Göttingen

ANCK-GESELLS

J. Büchner

The solar corona - open questions

ESAC, June 10, 2011

M

Starting 2014: MPS in Göttingen

ANCK-GESELLS

J. Büchner

The solar corona - open questions

Solar storm , Tuesday 7.7.2011:

ANCK-GESELLS

38:30 h of NASA-SDO (AIA) s/c observations (from June 5 20:30 UT -June 7 11:00 UT) -> M-2 (mediumsized) flare -> S1-class (minor) radiation storm -> coronal mass ejection (CME) launched on June 7, ~ 7:00 UT from ARs (sunspot complex) 1226 – 1227 at the west limb. ESAC, June 10, 2011

J. Büchner

The solar corona - open questions

SDO three wavelengh composite movie and X-rays

Top graph - the Xray flux observed at the geostationary orbit by GOES-15 Main movie: an SDO zoom-in composite of observations at 211 Å, 193 Å and 171 Å wavelengths (21.1, 19.3, 17.1 nm) **Between** June 7 6:10 UT and June 7 7:13 UT (Blast: 6:20 – 6:41) ESAC, June 10, 2011

J. Büchner

The solar corona - open questions

Stereo coronographs

Stereo ahead

Stereo behind

J. Büchner

The solar corona - open questions

• But: it is not known yet, what the physical processes behind are!

J. Büchner

The solar corona - open questions

- Coronal heating to million K and: what causes
 - the solar wind,
 - coronal mass ejections,
 - particle acceleration,
 - influencing the "Space Weather" near the Earth, the planets and the interplanetary space?
- Needed:
 - multiwavelengths (visible, EUV, X-rays) and in situ observations of waves and particles as close as possible to the Sun
 - Modelling, numerical simulation

The solar corona - open questions

- Main energy input from below the atmosphere could be observed indirectly by local helioseismology
- The complicated, often complex coronal magnetic field (B) builts current sheets, whose size is below the spatial (pixel) resolution
- Large scale B-field energy releases via reconnection, often explosively but also quasi-stationarily
- Considerably inhomogeneous plasma, structured by gravity, B fields, heat conduction and radiative losses

The solar corona - open questions

The solar corona - open questions

eruption

•[Bothmer & Tripathi, 2005]

-> Eruptions, when newly emerging
 •flux is oppositely directed

J. Büchner

The solar corona - open questions

Example: eruption of AR 8210

ANCK-GESELLS

AR 8210 195 Å (EUV) observation SOHO/EIT

GIF-Bild

12.09.2000

After long accumulation of magnetic shear:

Flare eruption at 11:48 UT

J. Büchner

The solar corona - open questions

Magnetic flux emergence

Magnetic Field Movie.gif

SoHO/MDI B-field 10.-13.09.2000, Flare burst on 12.9.00 at 11:48 UT

Site of the emergence of new magnetic flux

J. Büchner

The solar corona - open questions

The solar corona - open questions

Model including coupling to the chromosphere, heat ...

Set of MHD equations:
$$\frac{\partial \rho}{\partial t} = - \nabla \cdot \rho u$$

$$\frac{\partial \rho u}{\partial t} = -\nabla \cdot \rho u u - \nabla p + j \times B - v \rho (u - u_0)$$
$$\frac{\partial B}{\partial t} = \nabla \times (u \times B - \eta j)$$

(the index "0" indicates chromosph. neutrals coupled to the plasma)

$$E = -\boldsymbol{u} \times \boldsymbol{B} + \eta \boldsymbol{j}, \ \boldsymbol{\nabla} \times \boldsymbol{B} = \mu_0 \boldsymbol{j}, \ p = 2n\kappa_B T$$

+ closing energy equation

J. Büchner

The solar corona - open questions

The solar corona - open questions

In RMHD induction eq. controls the B-field evolution

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) \neq \nabla \times (\eta \nabla \times \mathbf{B}) = 0$$

Typical for the solar corona are huge magnetic Reynolds numbers $R_m \sim 10^{10}$ - i.e. currents cannot simply by dissipated (in contrast to the chromosi

(in contrast to the chromospheric Jpar currents!)

The solar corona - open questions

The only solution is:

Rm has to become ~1

Since *v* ~ 10 km/s two ways to decrease R*m*: 1.) Decrease *I* by thinning η he current sheets 2.) Enlarge the resistivity - e.g. by plasma turbulence due to micro-instabilities

J. Büchner

The solar corona - open questions

How? - Micro-turbulence

The resistivity, parametrized via an effective "collision frequency", is dominated

In the (lower) chromosphere: by binary particle collision rate [Spitzer-Härm–Braginski Theory 1958-63]

In the corona:

by plasma turbulence as obtained by Vlasov code simulations for coronal conditions, Te~Ti etc: [Büchner & Elkina 2006/2007]

for higher beta plasma -> 1D: IA double layers
for lower beta plasma -> 2D: LH turbulence
But: as threshold: a large current carrier drift
velocity j/ne > v_te (-> thin sheets!)

 $\nu_{coll} \cong \frac{\omega_{pe}}{n\lambda_{-}^3}$

 $\nu_c \approx \omega_{pi}/2\pi$

 $u_c \approx \omega_{\rm LH}$

The solar corona - open questions

Resistivity models

Resistivity models used:

1

Current carrier velocity dependend anomalous resitivity (eta_{eff} = 10^9 times the Spitzer resistivity)

$$\eta = \eta_0 + \begin{cases} 0, & \text{if } |u_{ccv}| < u_{crit} \\ \eta_{eff} \left(\frac{|u_{ccv}|}{u_{crit}} - 1 \right), & \text{if } |u_{ccv}| \ge u_{crit} \end{cases}$$

$$\eta_{eff} = \frac{\nu_{eff}}{\epsilon_0 \,\omega_{pe}^2} = \frac{\omega_{pi}}{\epsilon_0 \,\omega_{pe}^2}$$

Current density dependend resistivity

$$\eta = \eta_0 + \begin{cases} 0, & if|j| < j_{crit} \\ \eta_0(\frac{|j|}{j_{crit}} - 1)^2 & if|j| \ge j_{crit} \end{cases}$$

J. Büchner

The solar corona - open questions

Coronal magnetic Null

J. Büchner

The solar corona - open questions

MPS

If the the plasma at the footpoints of the fan field lines is moved clockwise -> strong central shear -> Formation of a current channel below the Null

[Santos,Büchner,Otto,11] (from the title page of Astronomy& Astrophys., January 2011)

Vol. 525 - Part I JANUARY • 2011

J. Büchner

The solar corona - open questions

Corresponding Epar distribution

ANCK-GESELLS

Result for the case where the plasma at both footpoints of the spine field lines are moved clockwise: Eta j electric fields are maximum below the Null

J. Büchner

The solar corona - open questions

Beijing, CAS, 26.5.2011

Initial stratified equilibrium

ANCK-GESELLS

Plasma density [height] temperature and pressure in the solar gravitation

- On average: heightstratified equilibrium - add B-fields extrapolated from observated LOS - Energy input: Plasma motion in the photosphere - Important: Rescaling of current densities to the plasma scales, not yet resolvable by MHD

J. Büchner

The solar corona - open questions

+ initial magnetic field =>

The solar magnetic is complex. It evolves due to the photospheric plasma motion away from the **lowest energy** state. This causes currents including non-force-free ones - and, finally, reconnection.

J. Büchner

The solar corona - open questions

Beijing, CAS, 26.5.2011

3D reconnection through QSLs

AN

Finite-B 3D reconnection due to plasma motion through a QSL (quasi-separatrix-layer = topological boundary)

strong Epar-here: field-line integrated

J. Büchner

The solar corona - open questions

Coronal hole observations

Magnetic field at 1:36 UTC for an area of about 180 Mm x 180 Mm between -41.6`` and 211,8`` longitude and 536.7`` and 790.1`` latitude on June 26, 1996 located inside a coronal hole around at 55' latitude. Shown are also projections of the extrapolated potential fields.

(Polar coronal hole)

J. Büchner

The solar corona - open questions

3D magnetic field structure

50 40 N 30 Z0 10 500 400 D. ā 300 100 200 200 100 300 400 500

The magnetic field consists of funnels – open magnetic flux along the **boundaries** of the coronal hole and low rising loops inside and outside the hole

J. Büchner

The solar corona - open questions

ν

Epar -> Plasma acceleration

The isosurfaces Vz=10 km/s • blue: upward

red: downward

demonstrate:

3D reconnection electric fields accelerate plasma both upward and downward

J. Büchner

The solar corona - open questions

3. Scales of energy release

ANCE CESELLS

AMR simulation of cascading mps reconnection – 1. Multiple Tearing

NCK-GESELLS

2.5 D high-resolution adaptice-mesh refinement MHD, tearing mode instability lets islands grow see [Bárta, Büchner, Karlicky and Kotrc, ArXive 2010, ApJ, 2011, paper 1, in press]

J. Büchner

The solar corona - open questions

Coalescence also contributes to the direct cascade

2.5 D high-resolution MHD, see [Bárta, Büchner, Karlicky and Kotrc, ApJ, 2011, paper 1, in press]

J. Büchner

The solar corona - open questions

Solar Orbiter - The Mission Gesa

Launch: January 2017, but ongoing: definition phase of 1. Solar Orbiter, 2. Euclid, 3. Plato; ESA decision of 2 M-class launches (470 MEURO) 2017 & 18 in October 2011

J. Büchner The solar corona - open questions ESAC, June 10, 2011

- Main question: How does the Solar System work?
- Specific goals:
 - produce images of the Sun at high resolution
 - perform closest ever in-situ measurements
- Target:
 - The Sun in visible light, extreme ultra violet, X-rays
- Orbit:
 - Elliptical orbit around the Sun, perihelion 0.28 AU
 - inclination increasing up to more than 30° with respect to the solar equator.
- Lifetime: 9-10 years, i.e. more than the 6 years for a nominal Type M-class mission!

The solar corona - open questions

Remote sensing instruments

ANCK-GESELLS

Polarimetric and Helioseismic Imager (PHI)	29.1	25.0	31.0	25.0	Optical unit: 79.5 x 40 x 29 cm Electronics: 20 x 40 x 29 cm	20	HRT: 16.8 x 16.8 arcmin FDT: 2.6° cone	SUNRISE/IMaX
EUV Imager (EUI)	18.1	20.0	24	25.0	Optical bench: 83 x 54.5 x 22.8 cm Electronics: 120x300x250 mm	20	FSI: 5.2 x 5.2 arcdeg HRI: 1000 x 1000 arcsec	SOHO, STEREO, TRACE, PROBA2
Spectral Imaging of Coronal Environment (SPICE)	18.4	18.0	28.8	25.0	Optical bench: 91.1 x 34.9 x 17.7 cm Electronics: 20 x 18.6 x 12.4 cm	17	1 arcsec x 17 arcmin slit	SOHO, SUMER, CDS, HINODE
X-ray Spectrometer Telescope (STIX)	4.4	10.0	4.4	10.0	Imager Module: 55 x dia. 18 cm Spectrometer: 18 x 20 x 22 cm Electronics: 16 x 20 x 22 cm	0.2	2.5° for spectroscopy 1.5° for imaging	RHESSI
Coronagraph (METIS/ COR)	20.6	25.0	26.0	25.0	Optical Bench: 90 x 44 x 25 cm Electronics: 22 x 25 x 10 cm	10	1.3°-3° annular, off-limb corona	SCORE/ HERSCHEL
Heliospheric Imager (SolOHI)	11.2	20.0	10.0	10.0	Optical unit: 425x140x180 mm Electronics: 100x100x50 mm	20	40° x 40°, offset 5° from Sun centre	STEREO

PHI: Magnetograph-Polarimeter (S. Solanki, PI instrument of the MPS Lindau) EUI(P.Rochus, Liege, Belgium; MPS Germany: hydrogen Lyman-α line 121.6nm) STIX:X-ray Spectrometer(A. Benz,Switzerland+UniKiel/ AIP Potsdam, Germany) METIS: Coronal imager and spectrograph (E. Antonucci, Italy + MPS Germany) SPICE: the extreme ultraviolet imaging spectrograph (Don Hassler, SWRI San Antonio) - is not funded by NASA at the moment!

J. Büchner

The solar corona - open questions

EUI – the EUV Imager

The EUI instrument suite:

- Two high resolution imagers (HRI)
 - Lyman-α
 - EUV (174 Å)
- One dual band full-sun imager (FSI)
 - 174 and 304 Å EUV

J. Büchner

The solar corona - open questions

- the Multi Element Telescope for Imaging and Spectroscopy - a Coronograph and Spectrometer

METIS Instrument Performance					
CORONAL IMAGING					
Avg. Instrumental Stray Light (Bcor/Bsun)	VL <10 ⁻⁹				
	UV/EUV < 10 ⁻⁷				
Wavelength range:	VL: 500-650 nm;				
	UV: 121.6 ± 10 nm				
	EUV: 30.4 ± 2 nm				
Spatial Resolution	20 arcsec				
Field-of-view	1.5° - 2.9° annular, off-limb corona				
CORONAL SPECTROSCOPY					
Wavelength range:	UV: 121.6 ± 0.9 nm				
	EUV: 30.4 + 0.22 nm				
Spectral Resolution	UV: 0.054 nm				
	EUV: 0.013 nm				
Spatial Resolution	34 arcsec				
Field-of-view	Slit radial positions: 1.5°, 1.8°, 2.1°				
	Slit extension: 0.8°				
GENERAL					
Telemetry rate	10 kbit/s				
Data volume (compression up to 10)	26 Gb/orbit				

J. Büchner

The solar corona - open questions

The Polarimetric and Helioseismic Imager

	D
	Requirement
Field of view (HRT)	>15 arcmin on 2kx2k detector
Field of view (FDT)	>150 arcmin on 2kx2k detector
Spatial resolution (HRT)	1 arcsec (0.5 arcsec pixel size)
Spatial resolution (FDT)	few arcsec pixel size
BLOS	± 3.5 kG
B _{TRA}	± 3.5 kG
v _{LOS} (long term)	$> 47 \text{ km s}^{-1}$

J. Büchner

The solar corona - open questions

Table 3.7 Solar Orbiter selected payload resource summary.

Investigation	Total Mass	Margin	Power	Margin	Dimensions	Telemetry	FOV	Heritage
	(kg)	(%)	(W)	(%)		(kbps)		
Solar Wind Analyzer	15.9	15.0	14.2	~15	EAS: 11.6 cm x dia. 13.6 cm	14	EAS: 360° x ±45° x 2	Ulysses, ACE,
(SWA)					PAS: 30 x 20 x 20 cm		orthogonal sensors to provide	STEREO
					HIS: 31 x 28 x 25 cm		4-π ster FOV	
							PAS: -17.5° to +47.5°	
							Azimuth-22.5° to +22.5°	
							Elevation	
							HIS: -33° to +63° Azimuth	
							-17° to +17° Elevation	
Energetic Particle	13.8	15.0	1 6.1	20.0	EPT1,2: 11 x 7 x 12 cm	3.1	EPT 1,2: 30° cones	STEREO, SOHO,
Detector (EPD)					SIS1,2: 35 x 13 x 11 cm		SIS: 22° cone (2x)	ACE
					LET1,2: 22 x 15 x 11 cm		LET1,2: 40° cone (3x)	
					HET: 13.6 x 17 x 16.2 cm		HET: 50° cone (x2)	
					STEIN: 10 x 13 x 13 cm		STEIN: 60° x 70° (2x)	
					CDPU/LVPS: 15 x 15 x 10 cm			
Magnetometer (MAG)	2.1	10.0	1.9	25.0	Fluxgate sensor (2x):	0.9	N/A	VEX, Themis,
					9.75 x 4.9 x 6.7 cm	(normal)		Rosette Lander,
					Electronics: 15.9 x 16.2 x 9.8 cm	6.8 (burst		Double Star
						mode)		
Radio & Plasma	13.6	15.0	11.5	20.0	Antenna (3x): 650 cm long	5	N/A	STEREO
Waves (RPW)					SCM: 13.6 x dia. 10.4 cm			
					Electronics: 24 x 21 x 15 cm			

J. Büchner

The solar corona - open questions

Remote-sensing instruments: locations and fields of view

In-situ instruments

J. Büchner

The solar corona - open questions

ESAC, June 10, 2011

sa

·ee

ANC

Summary - Mission overview

High-latitude Observations

Perihelion Observations

> High-latitude Observations

Summary Launch Date: January 2017 Cruise Phase: 3 years Nominal Mission: 3.5 years Extended Mission: 2.5 years Orbit: 0.28 – 0.30 AU (perihelion)

0.75 - 1.2 AU (aphelion)

Out-of-Ecliptic View: Multiple gravity assists with Venus to increase inclination out of the ecliptic to >25° (nominal mission), >33° (extended mission)

Reduced relative rotation: Observations of evolving structures on the solar surface & heliosphere for almost a complete solar rotation

J. Büchner

The solar corona - open questions

ESAC, June 10, 2011

•eesa