

Istituto Nazionale di Astrofisica

Osservatorio Astronomico di Brera

The optical counterparts of Accreting Millisecond X-ray Pulsars in quiescence: an observational review

Paolo D'Avanzo

INAF - Osservatorio Astronomico di Brera

Low Mass X-ray Binaries

- Binary systems
- Low mass companions
- Roche lobe overflow

Low Mass X-ray Binaries Low Mass X-ray Transients

LMXTs

- sporadic outbursts
- · long quiescent periods

- Binary systems
- Low mass companions
- Roche lobe overflow

- Unique opportunity to detect the companion
- Origin of the quiescent optical emission: companion, disk, irradiation...

- Unique opportunity to detect the companion
- Origin of the quiescent optical emission: companion, disk, irradiation...

BinSim R. Hynes

- Unique opportunity to detect the companion
- Origin of the quiescent optical emission: companion, disk, irradiation...

D'Avanzo et al. 2005

- Unique opportunity to detect the companion
- Radial velocity curve of the companion
- Optical mass function

$$f_{c}(M) \equiv \frac{P_{orb}K_{c}^{3}}{2\pi G} = \frac{M_{X}sin^{3}i}{(1+q)^{2}}$$
$$f_{X}(M) \equiv \frac{4\pi^{2}(a_{X}sin\,i)^{3}}{GP_{orb}^{2}} = \frac{M_{c}sin^{3}i}{(1+1/q)^{2}}$$
$$M_{X} = \frac{(1+q)^{2}}{sin^{3}i}f_{c}(M)$$

SAX J1808.4-3658: a ms Xray pulsar

MSPs: recycling model

(Alpar et al. 1982; Bhattacharya & van den Heuvel 1991)

rapid spin (ms)
low magnetic field (B ~ 10⁸-10⁹ G)
spin-up process
progenitors: accreting LMXBs

All AMXPs were found in LMXBs transient systems: rapidly spinning NS AMXPs can be the missing link between LMXBs and MSPs!

AMXPs

Source name	Spin	Orbital period	When discovered?
	101 = /2 10 m 1	2.01 has	Annii 1000
SAX J1808.4-3658	401 Hz / 2.49 ms	2.01 hrs	April 1998
XTE J1751-305	435 Hz /2.30 ms	0.70 hrs	April 2002
XTE J0929-314	185 Hz /5.41 ms	0.73 hrs	April 2002
XTE J1807-294	191 Hz /5.24 ms	0.67 hrs	Feb 2003
XTE J1814-338	314 Hz /3.18 ms	4.30 hrs	June 2003
IGR J00291-5934	599 Hz /1.67 ms	2.46 hrs	December 2004
HETE J1900.1-2455	377 Hz/2.65 ms	1.39 hrs	June 2005
SWIFT J1756.9-2508	182 Hz/5.49 ms	0.90 hrs	June 2007
Aql X-1	550 Hz/1.82 ms	18.95 hrs	August 2008
SAX J1748.9-2021	442 Hz/2.26 ms	8.77 hrs	August 2008
NGC 6440 X-2	206 Hz/4.85 ms	0.96 hrs	August 2009
IGR J17511-3057	245 Hz/4.08 ms	3.47 hrs	September 2009
Swift J1749.4-2807	518 Hz/1.93 ms	8.82 hrs	April 2010

AMXPs

Source name	Spin	Orbital period	Optical counterpart in quiescence
SAX J1808.4-3658	401 Hz /2.49 ms	2.01 hrs	У
XTE J1751-305	435 Hz /2.30 ms	0.70 hrs	N
XTE J0929-314	185 Hz /5.41 ms	0.73 hrs	У
XTE J1807-294	191 Hz /5.24 ms	0.67 hrs	N
XTE J1814-338	314 Hz /3.18 ms	4.30 hrs	У
IGR J00291-5934	599 Hz /1.67 ms	2.46 hrs	У
HETE J1900.1-2455	377 Hz/2.65 ms	1.39 hrs	N
SWIFT J1756.9-2508	182 Hz/5.49 ms	0.90 hrs	N
Aql X-1	550 Hz/1.82 ms	18.95 hrs	У
SAX J1748.9-2021	442 Hz/2.26 ms	8.77 hrs	N
NGC 6440 X-2	206 Hz/4.85 ms	0.96 hrs	N
IGR J17511-3057	245 Hz/4.08 ms	3.47 hrs	N
Swift J1749.4-2807	518 Hz/1.93 ms	8.82 hrs	N

Hard targets...

High interstellar absorption, crowded fields, intrinsic faintness

SAX J1808.4-3658: the optical counterpart P_{orb} ~ 2.0 hrs P_{spin} ~ 2.5 ms

VLT+FORS2 R-band image

(Homer et al. 2001, Burderi et al. 2003, Campana et al. 2004, Deloye et al. 2008, Wang et al. 2009)

SAX J1808.4-3658: the optical counterpart

minimum in the optical light curve when the NS is behind the companion (Homer et al. 2001,

Campana et al. 2004,

Deloye et al. 2008

Wang et al. 2009)

 $L_{irr} = 4x10^{33} \text{ erg/s} \gg L_{\chi} = 10^{31} \text{ erg/s}$

indirect evidence of an active ms radio pulsar

 $B \sim 6 \times 10^7 G$

(Burderi et al. 2003, Campana et al. 2004, Deloye et al. 2008, Wang et al. 2009)

IGR J00291+5934: the optical/NIR counterpart

see also Torres et al. 2008; Jonker et al. 2008

TNG+doLoReS R-band image (Aug 2005)

IGR J00291+5934: the optical light curve

IGR J00291+5934: the optical light curve

Jonker et al. 2008 (Sept. 2006)

IGR J00291+5934: possible sources of quiescent optical emission

D'Avanzo et al. 2007

XTE J1814-338: the optical counterpart

Krauss et al. (2005) VLT+FORS2 *R*-band image

XTE J1814-338: a puzzling light curve

 $P_{orb} \sim 4.3 \text{ hrs}$ $P_{spin} \sim 3.2 \text{ ms}$

XTE J1814-338: a puzzling light curve

Assuming a symmetric "eclipse" around phase 0: 1.0 R_{SUN} < eclipsing region < 3.0 R_{SUN}

No X-ray eclipses or dips ($i < 77^{\circ}$; Krauss et al. 2005)

D'Avanzo et al. 2009

XTE J1814-338: possible sources of quiescent optical emission

D'Avanzo et al. 2009

AMXPs

Source name	Spin	Orbital period	Optical counterpart in quiescence
SAX J1808.4-3658	401 Hz /2.49 ms	2.01 hrs	У
XTE J1751-305	435 Hz /2.30 ms	0.70 hrs	N
XTE J0929-314	185 Hz /5.41 ms	0.73 hrs	У
XTE J1807-294	191 Hz /5.24 ms	0.67 hrs	N
XTE J1814-338	314 Hz /3.18 ms	4.30 hrs	У
IGR J00291-5934	599 Hz /1.67 ms	2.46 hrs	У
HETE J1900.1-2455	377 Hz/2.65 ms	1.39 hrs	N
SWIFT J1756.9-2508	182 Hz/5.49 ms	0.90 hrs	N
Aql X-1	550 Hz/1.82 ms	18.95 hrs	У
SAX J1748.9-2021	442 Hz/2.26 ms	8.77 hrs	N
NGC 6440 X-2	206 Hz/4.85 ms	0.96 hrs	N
IGR J17511-3057	245 Hz/4.08 ms	3.47 hrs	N
Swift J1749.4-2807	518 Hz/1.93 ms	8.82 hrs	N

ultracompact AMXPs: companion stars

XTE J1751-305: the optical counterpart

Jonker et al. 2003, MNRAS, 344, 201

 R > 23.1 (3σ)

 I > 21.6 (3σ)

 Z > 20.6 (3σ)

 J > 19.5 (3σ)

 $E(B-V) = 1.7, A_V = 4.0$

XTE J1751-305: the companion star

D'Avanzo et al. 2009

XTE J1807-294: the optical counterpart?

V = 22.11 ± 0.05	/> 24.3 (3 σ)
<i>R</i> = 21.37 ± 0.07	R>24.2 (3o)
	<i>J</i> > 19.7 (3σ)
$E(B-V) = 0.8, A_V = 2.4$	

XTE J1807-294: the companion star

D'Avanzo et al. 2009

XTE J0929-314: the optical counterpart

I-band image (Giles et al. 2005) VLT+FORS1

(Monelli et al. 2005; I-band image D'Avanzo et al. 2009)

 $V = 28.2 \pm 0.4$ $R = 27.1 \pm 0.3$ $I = 26.9 \pm 0.4$

 $E(B-V) = 0.2, A_V = 0.5$

XTE J0929-314: the companion star

D'Avanzo et al. 2009

ultracompact AMXPs: companion stars

- as for compact AMXPs, the companion stars in ultracompact systems are highly irradiated
- with our data we cannot distinguish between the proposed models for the companion stars

BUT...

• at variance with compact systems, ultracompact AMXPs do not show type I X-ray bursts (i.e. Hydrogen/Helium ignition on the NS surface; Maraschi & Cavaliere 1977; Woosley & Taam 1976)

no hydrogen lines in ultracompact AMXPs spectra

WD scenario

SAX J1808.4-3658: 2008 outburst

SAX J1808.4-3658: VLT spectroscopy

SAX J1808.4-3658: Doppler maps

SAX J1808.4-3658: Doppler maps

Velocity (km/s)

SAX J1808.4-3658: mass estimate

Cornelisse, D'Avanzo, Muñoz Darias et al. 2009

SAX J1808.4-3658: mass estimate

(Elebert et al. 2009)

Conclusions

- Accreting Millisecond X-ray Pulsars:
 - first comprehensive study of the optical counterparts in quiescence
 - evidence of highly irradiated companion stars
 - weak (~10⁸ G) NS magnetic fields
 - indirect evidence of an active ms radio pulsar
 - no H in ultracompact systems: WD companions
 - Next: NS mass estimates through radial velocity measurements