High Resolution X-Ray Spectroscopy of the multiphase Interstellar Medium (ISM)

Ciro Pinto⁽¹⁾

- J. S. Kaastra^(1,2), E. Costantini⁽¹⁾, F. Verbunt^(1,2)
- ⁽¹⁾ SRON Netherlands Institute for Space Research
- ⁽²⁾ Astronomical Institute, Utrecht University

S-RON Netherlands Institute for Space Research

Netherlands Organisation for Scientific Research

Motivations

- ISM diagnostic:
 - Temperature structure
 - Chemical analysis
- ISM and Galaxy:
 - Mapping
 - Metallicity gradient
 - Evolution history

• Multiphase structure: gas, dust and molecules.

- Multiphase structure: gas, dust and molecules.
- Manifestations: obscuration, reddening and polarization emission of broadband continuum and lines

- Multiphase structure: gas, dust and molecules.
- Manifestations: obscuration, reddening and polarization emission of broadband continuum and lines
- Accounts for $\sim 10-15\%$ of the galactic-disk mass,
 - ightarrow along the spiral arms in small clouds
 - \rightarrow high inhomogeneity

- Multiphase structure: gas, dust and molecules.
- Manifestations: obscuration, reddening and polarization emission of broadband continuum and lines
- Accounts for ~ 10-15% of the galactic-disk mass, \rightarrow along the spiral arms in small clouds
 - \rightarrow high inhomogeneity
- Connection with the evolution of the whole Galaxy

 → stellar evolution enriches the ISM with heavy elements
 → ISM acts as source of matter for the star forming regions.

The Multiphase ISM: constituents

Gas phase	Component ⁻	Temp. (K)	n (cm³)	Constituents	Notes
Neutral gas	Cold molecular	~ 10–20	10 ² -10 ⁶	СН, СО, Ӊ	Block off the starlight background
	Cold atomic	~ 50-100	20-50	H I, NeI, OI	H I 21-cm line, UV and other lines
	Warm atomic	≤ 10 ⁴	0.2-0.5	H I, Nei, Oi	Absorption edges and lines
Ionized gas	Warm	~ 10 ⁴	0.2-0.5	Н II, NеII, О II	$H\alpha$ and low-ionization lines
	Hot	~ 10 ⁶	6.5 • 10 ⁻³	Ovii, Oviii, Neix	Soft X-ray bkg and high-ioniz. Lines

The Multiphase ISM: constituents

Gas phase	Component ⁻	Temp. (K)	n (cm³)	Constituents	Notes
Neutral gas	Cold molecular	~ 10–20	10 ² -10 ⁶	СН, СО, Ӊ	Block off the starlight background
	Cold atomic	~ 50-100	20-50	H I, NeI, OI	H I 21-cm line, UV and other lines
	Warm atomic	≤ 10 ⁴	0.2-0.5	H I, Nei, Oi	Absorption edges and lines
Ionized gas	Warm	~ 10 ⁴	0.2-0.5	Н II, NеII, О II	$H\boldsymbol{\alpha}$ and low-ionization lines
	Hot	$\sim 10^6$	6.5·10 ⁻³	Ovii, Oviii, Neix	Soft X-ray bkg and high-ioniz. Lines

- The chemical composition is close to that inferred from Solar and disk-stars abundances
- Heavier elements are often "depleted" from the gaseous phase \rightarrow solid dust grains

X-ray Spectroscopy: tool for ISM diagnostic

Search for absorption lines in X-ray spectra of background sources

 \rightarrow column densities for all relevant ions of the most abundant elements

Analysis of the chemical abundances in stars and ISM:

- ISM Diagnostic
- Stellar formation and ISM
- Evolution history
- Galaxy and ISM

Historical background

• First measurement of absorption edges in the X-ray band \rightarrow O I line and O II traces (Schattenburg & Canizares, 1986)

Historical background

- First measurement of absorption edges in the X-ray band \rightarrow O I line and O II traces (Schattenburg & Canizares, 1986)
- Higher-density regions have higher probability of forming dust and molecules (Williams & Taylor 1996)
- Complex structure around O I K-edge \rightarrow dust grains (Paerels et al. 2001, Takei et al. 2002, Costantini et al. 2005)

Historical background

- First measurement of absorption edges in the X-ray band \rightarrow O I line and O II traces (Schattenburg & Canizares, 1986)
- Higher-density regions have higher probability of forming dust and molecules (Williams & Taylor 1996)
- Complex structure around O I K-edge \rightarrow dust grains (Paerels et al. 2001, Takei et al. 2002, Costantini et al. 2005)
- EXAFS near the O I edge towards Sco X-1 \rightarrow amorphous ice (De Vries & Costantini 2009)

→ The instrument: XMM-Newton RGS (+ EPIC) → Ne, O, Mg K-edge and Fe L-edge

 \rightarrow Large effective area in 7-35 Å

→ The instrument: XMM-Newton RGS (+ EPIC) → Ne, O, Mg K-edge and Fe L-edge → Large effective area in 7-35 Å → The source: Law-Mass X-ray Binary (LMXB) GS 1826-238 $F_x \sim 9 \times 10^{-10} \text{ ergs cm}^{-2} \text{ s}^{-1}$ (in 0.3-10 keV) $N_{\text{H}} \sim 4 \times 10^{21} \text{ cm}^{-2}$

Distance \sim 6-7 kpc, near the center of the Galaxy

→ The instrument: XMM-Newton RGS (+ EPIC) → Ne, O, Mg K-edge and Fe L-edge → Large effective area in 7-35 Å → The source: Law-Mass X-ray Binary (LMXB) GS 1826-238 $F_x \sim 9 \times 10^{-10}$ ergs cm⁻² s⁻¹ (in 0.3-10 keV) $N_H \sim 4 \times 10^{21}$ cm⁻² Distance ~ 6-7 kpc, close to the center of the Galaxy

 \rightarrow The data: Two close observations of \sim 200 ks \sim 150 ks after background and bursts filtering

 \rightarrow The instrument: XMM-Newton RGS (+ EPIC) \rightarrow Ne, O, Mg K-edge and Fe L-edge \rightarrow Large effective area in 7-35 Å \rightarrow The source: Law-Mass X-ray Binary (LMXB) G $F_{v} \sim 9 \ge 10^{-10} \text{ ergs cm}^{-2} \text{ s}^{-1}$ (in 0. $N_{\perp} \sim 4 \times 10^{21} \text{ cm}^{-2}$ Distance \sim 6-7 kpc, close to the

 \rightarrow The data:

Two close observations of ~ 200 ks

 \sim 150 ks after background and bursts filtering

Spectral Modeling: the continuum

Fitting package: SPEX Kaastra et al. (1996)

- Simultaneous EPIC/RGS fit: 0.5-10 keV EPIC and 0.4-1.77 keV RGS
- Model for the continuum: Black body (bb) + 2 comptonization (comt)
- Absorption Model A: ISM \rightarrow cold neutral gas (*hot* model in SPEX)

Spectral Modeling: high resolution RGS spectra

- Model A: neutral interstellar gas with (~ 7 000 K)
- Abundances of Ne, O, Mg, Fe free to vary
- Temporarily ignored 2 small λ ranges: 17.2-17.7 Å and 22.7:23.2 Å \rightarrow dust effects
- Large residuals around 23 Å and 17.5 Å (~3σ)
- O II abs line at 23.35 Å
- O VII abs line at 21.6 Å
- All elements show overabundances with respect to the average Galactic values

Spectral Modeling: the multi-phase ISM

- Model B: 3-Gas model
- Abundances of: Ne, O, Mg, Fe are bound to those of the cold gas
- Presence of ionized gas
- $\Delta \chi^2 \leq 10 \%$

Spectral Modeling: the multi-phase ISM

Spectral Modeling: the multi-phase ISM

Spectral Modeling: dust and molecules \rightarrow iron edge

- Important improvements 1: a dust component (*dabs* model in SPEX)
- → shielding of X-ray photons by dust grains with radii of 0.025-0.25 µm
- More than 90 % of Fe appears to be bound in dust grains

Spectral Modeling: dust and molecules \rightarrow iron edge

- Important improvements 1: a dust component (*dabs* model in SPEX)
- → shielding of X-ray photons by dust grains with radii of 0.025-0.25 µm
- More than 90 % of Fe appears to be bound in dust grains

Spectral Modeling: dust and molecules \rightarrow oxygen edge

- Important improvements 2: a dust-molecular component (*amol* model in SPEX)
- → modified edge structure around the O K-edge of various oxygen compounds: CO, H₂0 ice O₂ and silicates, ...
- At least 10 % of oxygen appears to be bound in compounds: silicates are the best candidate

24

Spectral Modeling: dust and molecules \rightarrow oxygen edge

- Important improvements 2: a dust-molecular component (*amol* model in SPEX)
- \rightarrow modified edge structure around the O K-edge of various oxygen compounds: CO, H₂0 ice O₂ and silicates, ...
- At least 10 % of oxygen appears to be bound in compounds: silicates are the best candidate

ISM diagnostic - oxygen

- Most of the absorption is due to the cold neutral gas
- Dust and ionized gas give distinct local contributions

Phase	Constituents	% $N_{o}^{}$ in phase	% of N $_{\rm o}$
	0 1	94	
Gas	0 II, 0 III, 0 IV	4	90
	Ο νΙΙ, Ο νΙΙΙ	2	
Dust	Silicates	85 - 100	8
	Other Oxides	0 - 15	
Molecules	H ₂ O ice	~ 65	0 - 2
	CO	~ 35	

ISM diagnostic – chemical abundances

- Abundances \rightarrow sum of all the phases
- Nitrogen abundance (*) is fitted by extending the fit to 7-33 Å
- GS 1826-238 is towards the Galactic center at \sim 6-7 kpc

Crab \rightarrow Kaastra et al. (2009) Cyg X-2 \rightarrow Yao & Wang (2006) 4U 1820-303 \rightarrow Yao et al. (2009)

Abundances are referred to the proto-Solar value of Lodders (2003)

Х	Pure Gas	Gas + Dust	Crab	Cyg X-2	4U 1820
N*	2.5 ± 0.7	2.4 ± 0.7	1.01 ± 0.09	-	-
Ο	1.29 ± 0.02	1.23 ± 0.05	1.03 ± 0.02	~ 0.67	~ 0.6
Ne	2.19 ± 0.10	1.75 ± 0.11	1.72 ± 0.11	~ 0.94	~ 1.3
Mg	1.93 ± 0.15	2.45 ± 0.35	0.85 ± 0.21	~ 0.84	-
Fe	1.65 ± 0.08	1.37 ± 0.17	0.78 ± 0.05	-	-

ISM diagnostic – abundances gradient

- All elements show over-abundances
- Abundances appear to be related to the line of sight
- **O** ~ 1.23 \rightarrow change in (O/H) ~ 0.04 kpc⁻¹ (Esteban et al. 2005)
- Fe ~ 1.37 \rightarrow change in (Fe/H) ~ 0.06 kpc⁻¹ (Pedicelli et al. 2009)
- Different gradients trace different composition in the ISM

Х	Pure Gas	Gas + Dust	Crab	Cyg X-2	4U 1820
N*	2.5 ± 0.7	2.4 ± 0.7	1.01 ± 0.09	-	-
0	1.29 ± 0.02	1.23 ± 0.05	1.03 ± 0.02	~ 0.67	~ 0.6
Ne	2.19 ± 0.10	1.75 ± 0.11	1.72 ± 0.11	~ 0.94	~ 1.3
Mg	1.93 ± 0.15	2.45 ± 0.35	0.85 ± 0.21	~ 0.84	-
Fe	1.65 ± 0.08	1.37 ± 0.17	0.78 ± 0.05	-	-

ISM towards GS 1826-238: consistencies

- Complex multi-phase structure: media with different ionization state and composition (Ferrière 2001)
- About 95% of absorption is due to a gas with \sim 7 000 K
- About 5% of the gas is ionized: $T_{warm} \sim 70\ 000$ K, $T_{hot} \sim 2 \ x\ 10^{6}$ K \rightarrow agrees with 4U 1820-303 (Yao & Wang 2006)

ISM towards GS 1826-238: consistencies

- 90% of iron and 10% of oxygen are bound in dust
 → agrees with Crab (Kaastra et al 2009 and Wilms et al. 2000)
- The bulk of dust is represented by silicates (olivine, andradite) (Paerels at al. 2001, Takei et al. 2002, Costantini et al. 2005)
- Dust presence is also confirmed by IR observations

ISM towards GS 1826-238: news

- The total $N_{\mu} = (4.14 \pm 0.07) \ 10^{21} \ \text{cm}^{-2}$ is higher than other estimates
 - \rightarrow (3.19 ± 0.01) 10²¹ cm⁻² by Thompson et al. ('08)
 - \rightarrow expected if we are considering contributions from all the phases
- The (dust/gas)_{Fe} is among the highest measured
 - \rightarrow dense regions near the G. center
 - \rightarrow forming dust from gas particles (Williams & Taylor '96)

ISM towards GS 1826-238: news

- The total $N_{H} = (4.14 \pm 0.07) \ 10^{21} \ \text{cm}^{-2}$ is higher than other estimates
 - \rightarrow (3.19 ± 0.01) 10²¹ cm⁻² by Thompson et al. ('08)
 - \rightarrow expected if we are considering contributions from all the phases
- The (dust/gas)_{Fe} is among the highest measured
 - \rightarrow dense regions near the G. center
 - \rightarrow forming dust from gas particles (Williams & Taylor '96)
- Over-abundances:
 - ightarrow edges better fitted with the complete model
 - \rightarrow all main phases contributing
- The metallicity gradient is a trace of evolutionary effects:
 - \rightarrow supernovae explosions enrich the ISM with heavy elements
 - \rightarrow crucial in high-density region like towards the Galactic center

Conclusion and future

- X-ray spectroscopy is a powerful tool to investigate the ISM
- Detailed chemical analysis and charge states study of the gas
- Constrain some ISM constituents that at other wavelengths (e.g. optical) could be prohibitive, such as dust

Conclusion and future

- X-ray spectroscopy is a powerful tool to investigate the ISM
- Detailed chemical analysis and charge states study of the gas
- Constrain some ISM constituents that at other wavelengths (e.g. optical) could be prohibitive, such as dust
- The analysis can be extended to several sources in different directions of the Galaxy \rightarrow complete mapping of the ISM
- We need to: larger lab. data,

higher S/N data, better resolution (e.g. to distinguish among the compounds) more sources

Conclusion and future

- X-ray spectroscopy is a powerful tool to investigate the ISM
- Detailed chemical analysis and charge states study of the gas
- Constrain some ISM constituents that at other wavelengths (e.g. optical) could be prohibitive, such as dust
- The analysis can be extended to several sources in different directions of the Galaxy \rightarrow complete mapping of the ISM
- We need to: larger lab. data,

higher S/N data, better resolution (e.g. to distinguish among the compounds) more sources (*)

Thanks for your attention !