Variations of the IMF and of the SFE: Physics or Random Sampling?

Imperial College London

Collaborators

Subhanjoy Mohanty, Paolo Padoan, Sylvain Bontemps, Laurent Piau, Jonathan Braine, Axel Brandenburg, Enrique Vazquez-Semadeni, Mohsen Shadmehri, Fazeleh Khajenabi, Jongsoo Kim, Chang-Won Lee, Maheswar Gopinathan, Devendra Ojha

Fundamental Issues in Star Formation

- Formation and statistical properties of dense molecular cloud cores (mass function of cores, scaling relations, gravitational boundedness, rotational properties)

- Role of gravity: coalescence of cores, gas accretion

- Role of the initial conditions: chemical composition, turbulence, magnetic fields
- Role of feedback: stellar outflows, radiation, winds
- The relationship between CMF and the IMF
- How do these processes regulate the SFE ?

The IMF of Open Stellar Clusters

Massey et al. 1995a,b Massey 2003

The IMF of open stellar clusters

Sharma et al. 2008

Starburst Clusters

They are:

Massive: ~10⁴-10⁵ Msol

Dense ~ 10^4 - 10^5 Msol pc⁻²

The IMF of Starburst Stellar Clusters

Arches: Stolte et al. 2005, Kim et al. 2006

NGC 3603: Stolte et al. 2006; Eisenhauer et al. 1998, Harayama et al. 2007

The imprint of the gaseous phase: CMF-IMF relation ?

Random Sampling the IMF

Elmegreen 2008

The input of numerical Simulations

Simulations of turbulent, magnetized, and self-gravitating clouds

with grid codes: ZEUS, TVD (256³ and 512³), and the AMR code RAMSES (effective resolution of 4096³)

CMF: Lognormal ... but with ongoing accretion

Dib et al. (2007a), Dib et al. (2008a,b)

Regulation of the CFE by B

Dib et al. in 2010b

core coalescence

Dib et al. 2007a

A model for core coalescence in a protocluster clump

coalescence efficiency $\eta;~$ in principle η (r)

contration timescale t_cont = n t_ff; n=1-10

Protocluster cloud mass, McI

Radius and core Radius R_c, R_c0

fraction of mass in clumps $\boldsymbol{\epsilon}$

Larson relation exponent α , or exponent of turbulent vel. field power spectra β

Cores initial peak density n_p0

Mass fraction lost in outflows Ψ , in principle = $\Psi(M)$ (Matzner & McKee 2000)

Flowchart of the model

calculate instanteneous cross section of collision between contracting objects of Masses M_i and M_j and integrate over the mass spectrum.

$$\sigma(M_i, M_j, r, t) = \pi \left(R_i(t) + R_j(t) \right) \left[1 + \frac{2G(M_i + M_j)}{2v^2(R_i(t) + R_j(t))} \right]$$

$$\frac{dN(r,M,t)_{coal}}{dt} = \frac{1}{2} \eta(r) \int_{M_{min}}^{M-M_{min}} N(r,m,t) N(r,M-m,t) \sigma(m,M-m,r,t) v(r) dm$$
$$-\eta(r) N(r,M,t) \int_{M_{min}}^{M_{max}} N(r,m,t) \sigma(m,M-m,r,t) v(r) dm$$

Coalescence-Collapse: Application to Starburst Clusters

Dib et al. 2007b

An Accretion-Collapse-Feedaback model in a

protocluster clump

General properties

- A) Accretion model (constrained by simulations) ; e.g. What is the form of \dot{M}
- B) Fraction of the mass of the clumps converted into dense cores per free fall time ε (a few percent)

Clump properties

- C) Protocluster cloud mass-radius relation, M_cl-R_cl (constrained by the observations)
- D) Clump core Radius, R_c0 (0.02 pc)
- E) exponent of density profile in outer regions, b. (between 1.4-2.2)
- F) Larson relation exponent α , or exponent of turbulent vel. field power spectra β (constrained by the observations)

Core properties

- G) Contration timescale t_cont = v t_ff; v =1-10 (constrained by the observations and theory)
- H) Cores peak density with respect to clump background density as a function $\rho_{\text{p0}}~~\text{(constrained by the observations and theory)}$

Feedback from massive stars (M > 10 M_{sol})

I) Mass loss rate of massive stars and the terminal velocity of the wind

J) Fraction of wind energy that disperses the gas from the clump

(unknown, we take 0.1)

then we evolve the population of cores and stars

Populations of cores evolve by accretion

$$\frac{dN(r,M,t)_{acc}}{dt} = \left(-\frac{\partial N}{\partial M}\dot{M} - \frac{\partial \dot{M}}{\partial M}N\right)(r,M,t)$$

Populations of stars evolve under mass loss

$$\frac{dN(r,M,t)_{*}}{dt} = \left(+\frac{\partial N_{*}}{\partial M_{*}} \dot{M}_{*} + \frac{\partial \dot{M}_{*}}{\partial M_{*}} N_{*} \right) (r,M,t)$$

The accretion model: accretion in a turbulent medium

Schmeja & Klessen 2004

$$\log M_{SK04}^{\cdot} = \left(\frac{n(cm^{-3})}{10^5}\right) \log M_{SK04,0}^{\cdot} \frac{e}{\tau} t e^{-t/\tau}$$

Feedback in the model

Stellar mass loss rate

$$\left(\frac{dM}{dt}\right)_* = 10^{-5} \left(\frac{M_*}{30M_{sol}}\right)^4 M_{sol} yr^{-1}$$

<u>Terminal wind velocity</u> $v_{inf}=10^3 \text{ km s}^{-1}$

Energy cumulated in winds

$$E_{wind} = \int_{t^{"}=0}^{t^{"}=t} \int_{m=10M_{sol}}^{m=120M_{sol}} \left(\frac{N(m)(dM/dt)_{*}(m)v_{\inf}^{2}}{2} dm \right) dt^{"}$$

Fraction of wind energy that counters gravity

 $E_{k,wind} = \kappa E_{wind}$ with $\kappa \leq 1$

ACF model: fiducial model: Application to the ONC

Variations with the cores properties

Effect of the contraction timescale of the cores (parameter v)

Dib et al. 2010a

The SFEs in clusters

$$SFE(t) \approx \frac{M_{cluster}(t)}{M_{gas,i} + M_{gas,acc}(t)}$$

Final value of the SFE: $SFE_{exp} = SFE(t_{exp}) \approx \frac{M_{cluster}(t_{exp})}{M_{gas,i} + M_{gas,acc}(t_{exp})}$ For an isolated clump: $SFE_{exp} \approx \frac{M_{cluster}(t_{exp})}{M_{cluster}}$

In the observations: $SFE_{cluster,obs} \approx \frac{M_{cluster}}{M_{cluster}} = SFE_{cluster,obs} \sim 0.1-0.5$

No established dependences on mass, metallicity, environment

Power of stellar Winds of various metallicities In the range Z/Z_{\odot} =[0.1, 2]

- Calculate main sequence models of OB stars (\geq 5 M_{\odot}) (using CESAM)
- (T_{eff}, L, Radius) \rightarrow Stellar atmosphere model (Vink et al.) $\rightarrow M M v_{\infty}^2$

Model with solar metallicity

SFE_{exp}-metallicity relation

Dib et al. (2011)

Galatic SFEs

Dib et al. (2011)

Stellar clusters mass function vs. Protocluster clumps mass function

The Star Formation Law

The molecular fraction f_{H2}

Krumholz, McKee & Tumlinson 2009

Gnedin & Kravtsov 2011

Regulation of the SFE by Feedback

Star formation occurs in protostellar clumps (embedded in GMCs).

$$\begin{split} \Sigma_{SFR} &= \Sigma_g f_{H_2} \Big(\Sigma_g, Z \Big) \frac{\left\langle SFE_{\exp} \right\rangle}{\left\langle t_{\exp} \right\rangle} \\ \Sigma_{SFR} &= \Sigma_g f_{H_2} \Big(\Sigma_g, Z \Big) \frac{\left\langle SFE_{\exp} \right\rangle}{\left\langle n_{\exp} t_{ff} \right\rangle} \\ \Sigma_{SFR} &= \Sigma_g f_{H_2} \frac{\left\langle f_{*,ff} \right\rangle}{\left\langle t_{ff} \right\rangle} \end{split}$$

The characteristic mass is

$$N(M_{clump}) \propto M_{clump}^{-\delta} \qquad M_{char} = \int_{M_{cl,min}}^{Max(M_{cl,max},M_{GMC})} M(M) dM$$
$$\langle f_{*,ff} \rangle (Z) = \int_{M_{cl,min}}^{\max(M_{cl,max},M_{GMC})} f_{*,ff}(M,Z) N(M) dM$$

The Star Formation Efficiency per unit time in The Feedback Regulated Star Formation model

The Star Formation Efficiency per unit time in The Feedback Regulated Star Formation model

The Star Formation Laws in Galaxies: Feedback regulated vs. Turbulence regulated

Observational data:

Kennicutt (1998), Bigiel et al. (2008, 2010)

Conclusion

- * Magnetic fields regulate the rate of core formation in a clump/cloud per unit time.
- * Effiecent core coalescence can significantly flatten the CMF in the intermediate and high mass regimes
- * Gas accretion affects all the CMF mass range
- * Feedback is a crucial regulator of the SFE in a protocluster clump.
- * Stong metallicity dependence of the SFE. Decreases with increasing metallicity

Implications of the feedback regulated, metallicity dependent star formation

- Mass functions of protocluster clumps, and stellar clusters (slopes of $\thickapprox -2$)
- Galactic SFEs depend on metallicity
- Metallicity dependent Star Formation Laws in Galaxies over the entire surface density regime.