Discs and Jets in X-ray Binaries: Confusion in the Optical and Infrared

Dave Russell

iversity of Amsterdam

In collaboration with: Dipankar Maitra, Rob Fender, Fraser Lewis, Robert Dunn, Sera Markoff, Piergiorgio Casella

ESAC, Madrid

27th May 2010

Introduction: X-ray Binaries

This is a low-mass X-ray binary (LMXB)

Physical components:

- \rightarrow Star
- \rightarrow Compact object
- \rightarrow Accretion disc
- \rightarrow Hot inner flow
- \rightarrow Corona
- \rightarrow Jets

Mass transfer causes an outburst when disc becomes unstable

GRO J1655-40 outburst in 2005 \rightarrow (Migliari et al. 2007)

What does the optical/IR emission tell us?

 \rightarrow outburst light curves and spectra similar to dwarf novae \rightarrow disc

→ actually, the X-ray heated disc dominates over the viscous disc

But wait...

In the last decade evidence shows that:

 \rightarrow the jet is sometimes visible in optical and NIR

Mirabel et al. (1998) showed NIR flares from GRS 1915+105 (found by Fender et al. 1997) originate in the jets

X-ray Binary Jets

Quasars and Microquasars

Quasars and Microquasars

Head-tail trails

3C 83.1 (Odea & Owen 1986)

FR II Radio Galaxy NVSS 2146+82 at 1.4 GHz (Palma et al. 2000)

Supermassive black hole jets

Stellar-mass black hole jets

Predicted by Heinz et al. 2008 for fast moving LMXBs Possible first

Possible first detected XB head-tail source: SAX J1712.6-3739 (Wiersema et al. 2009) Cen A Multiwavelength (Kraft et al. 2008)

Cygnus X-1: Gallo et al. 2005, Russell et al. 2007

So where were we?

In the last decade evidence shows that:

 \rightarrow the jet is sometimes visible in optical and NIR

Mirabel et al. (1998) showed NIR flares from GRS 1915+105 (found by Fender et al. 1997) originate in the jets

But wait...

But wait...

Models predict linear polarisation from the optically thin synchrotron jet

And in quiescence, the star

e.g. stellar absorption lines (Filippenko et al. 1999)

What can optical/IR studies tell us?

Can study:

- > properties of the inner jet/magnetic field (from e.g. polarization)
- → relations with inflow: disc/jet coupling (from optical+X-ray fast timing)
- → jet power, physical properties (from models of the total broadband spectrum of the jet)

Can study:

- \rightarrow composition of disc
 - (from spectral lines)
- → temperature and size of outer disc (from colours, and viscous timescale: optical+X-ray slow timing)
- → echo-mapping the disc
 (from optical+X-ray fast timing)

Disc/jet evolution during an outburst

We need to separate the disc and jet components

Disc/jet evolution during an outburst

We need to separate the disc and jet components

(3) Can use correlations between wavebands

Colour-magnitude diagrams of outbursts

Can use colour-magnitude diagrams (CMDs) to distinguish jet from disc

 \rightarrow Model: a simple single-temperature blackbody heating up

 \rightarrow Able to reproduce the CMDs of 8 outbursts of Aql X-1

 \rightarrow Optical and NIR dominated by irradiated disc

Colour-magnitude diagrams of outbursts

X-ray Hardness-intensity diagram

Outburst of XTE J1550-564 in 2000 Data from Jain et al. 2001 Russell, Maitra et al. in prep.

A synchrotron jet dominating X-ray? Russell et al. 2010, MNRAS, in press

Colour-magnitude diagrams of outbursts

4U 1543-47 outburst Data from Buxton & Bailyn 2004

The story of a black hole outburst

A picture of the X-ray behaviour of black hole XB outbursts has now emerged (Fender et al. 2004; 2009): We can add information from optical/IR

Colour-magnitude diagrams can successfully separate disc / jet contributions and predict where a source lies in the X-ray hardness-intensity diagram

Optical/IR monitoring of LMXB outbursts is valuable

Conclusions about the outer disc

- → Irradiation by X-rays dominates over viscous heating in BHs and NSs
- → A single-temperature blackbody can approximate most of the data
- → viscous disc makes a contribution: from lags, can get viscous timescale
- → Outer disc may shrink in area as it fades in at least one case

Conclusions about the inner jet

- → Jet dominates optical/IR at high luminosities in the hard state for BHs
- → Also in NSs with small accretion discs (e.g. the milli-second X-ray pulsars)
- → IR jet exists only in hard state, and for one source briefly in a softer state
- → Jet does not dominate optical/NIR in quiescence but may in mid-IR