

Gas inside the 97 au cavity around Ithe transition disk Sz 91: ALMA + Herschel

Héctor Cánovas (U. Valparaiso) Matthias Schreiber (U. Valparaiso) Claudio Cáceres (U. Valparaiso) Francois Ménard (U. Chile, Santiago) Christophe Pinte (U. Chile, Santiago) Geoff Mathews (U. Hawaii) Lucas Cieza (U. Diego Portales, Santiago) Simon Cassasus (U. Chile, Santiago) Antonio Hales (ALMA) Jonathan Williams (U. Hawaii) Pablo Roman (U. Chile, Santiago) Adam Hardy (Valparaiso)

esac Outline

2015

1) The "Transition Disk" class

- 2) Introducing Sz 91
- 3) ALMA result & SED
- 4) Radiative Transfer Modeling
- 5) Results & Implications for Planet Formation

Protoplanetary Disks: SED

1. SED is KEY to identify protoplanetary disks

 Disk's evolution is FAST.

3. Protoplanetary disks are the BIRTHPLACES of planets.

Adapted from Cieza et al. 2012

2015

Transition disks: flux depletion at NIR

SED Adapted from Cieza et al. 2012, Strom et al. 1989

Transition disks: flux depletion at NIR

r > 1 AU), and the absence of excess emission at $\lambda < 10 \,\mu$ m (which implies absence of warm dust in the inner disk, r < 1 AU) may diagnose *disk clearing* in the inner regions of the disk. If so, these observations may represent the first astrophysical evidence of disks *in transition* from massive, optically thick structures that extend inward to the stellar surface, to low-mass, tenuous, perhaps post-planet-building structures.

Wavelength [μ m]

Transition disks: flux depletion at NIR

r > 1 AU), and the absence of excess emission at $\lambda < 10 \,\mu$ m (which implies absence of warm dust in the inner disk, r < 1 AU) may diagnose disk clearing in the inner regions of the disk. If so, these observations may represent the first astrophysical evidence of disks *in transition* from massive, optically thick structures that extend inward to the stellar surface, to low-mass, tenuous, perhaps post-planet-building structures.

Wavelength [μ m]

Transition disks: flux depletion at NIR

Wavelength [μ m]

"The state-of-the-art": direct images of TDs

HD 142527, NaCo/VLT

HD 135344, GPI/Gemini

MWC 758, SPHERE/VLT

HD 135344, MagAO/Magellan

"The state-of-the-art": direct images of TDs

HD 135344, GPI/Gemini

2015

MWC 758, SPHERE/VLT

HD 135344, MagAO/Magellan

"The state-of-the-art": direct images of TDs

MWC 758, SPHERE/VLT

HD 135344, GPI/Gemini

2015

HD 135344, MagAO/Magellan

"The state-of-the-art": direct images of TDs

MWC 758, SPHERE/VLT

HD 135344, GPI/Gemini

HD 135344, MagAO/Magellan

"The state-of-the-art": direct images of TDs

HD 135344, GPI/Gemini

HD 135344, MagAO/Magellan

"The state-of-the-art": direct images of TDs

"The state-of-the-art": direct images of TDs

Sz 91: Basic data

- Lupus III Star Forming Region
- distance ~ 200 pc
- Age ~< 1 Myr
- Spt ~ M1.5
- M★ ~ 0.47 M_☉
- R★ ~ 1.46 R_☉

THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS*

GISELA A. ROMERO^{1,2,3}, MATTHIAS R. SCHREIBER¹, LUCAS A. CIEZA^{4,9}, ALBERTO REBASSA-MANSERGAS¹, BRUNO MERÍN⁵, ANALÍA V. SMITH CASTELLI^{3,6}, LORI E. ALLEN⁷, AND NIDIA MORRELL⁸

Sz 91: previous facts

2015

Sz 91: Basic data

No stellar companions detected Direct Imaging + Radial Velocity

Romero et al. 2012

Sz 91: previous facts

2015

Sz 91: Basic data

No stellar companions detected Direct Imaging + Radial Velocity

Romero et al. 2012

Universidad deValparaíso

Sz 91: previous facts

Sz 91: Basic data

No stellar companions detected Direct Imaging + Radial Velocity

Romero et al. 2012

Sz 91: 2014 Subaru & SMA

NIR & 870 μ m cavity of r ~65 au

ALMA Cycle 0: 20 (12m) Antennas

- High Spatial resolution
- High Spectral resolution
- High Sensitivity

ALMA data: Continuum (dust) 1.3mm

2015

ALMA data: 12CO(2-1)

Assym. CO Profile: Cloud Emission :(

2015

ALMA data: 12CO(2-1)

2015

ALMA data: 12CO(2-1)

Sz 91: ALMA Cycle 0

2015

2015

2015

2015

Radiative Transfer model

COMPLEX!!

 $dn(a) \propto a^{-p} da$ $\Sigma(r) = \Sigma_C r^{-\gamma} \exp\left[-\left(\frac{r}{R_C}\right)^{2-\gamma}\right]$ $H(r) = H_0(r/100 \text{au})^{\psi}$ $V_{th} = \sqrt{2k_b T_{CO}/m_{CO}}$ $\rho(r, z) = \rho(r, 0) \exp\left[-\frac{z^2}{2H(r)^2}\right]$

MODELING APPROACH

Canovas et al. 2015

Simplifying quite a lot

summarizing

- 97 au cavity: largest cavity around <1 M_☉ stars! (average r to Pluto: 39.5 au)
- Cavity divided in 2 sub-zones
- CO inside the cavity
- Compact outer disk
- Disk Mass ~14.3 M_Earth

MAD	ESAC	Results		2015	Universidad de Valparaíso
	Name	M _d	R _{cav}	<i>M</i> *	
		(M_{\odot})	(AU)	(M_{\odot})	
• 97 au	(1)	(2)	(6)	(8)	stars!
(avera	MWC 758	0.008	73	1.8	
	SAO 206462	0.026	46	1.6	
 Cavity 	LkHa 330	0.024	68	2.2	
	SR 21	0.006	36	2.0	
	UX Tau	0.007	25	1.5	
• CO insi	SR 24 S	0.045	29	2.0	
	DoAr 44	0.007	30	1.3	
• Compa	LkCa 15	0.055	50	1.01	
	RX J1615-3255	0.128	30	1.1	
• Disk M	GM Aur	0.070	28	0.84	
	DM Tau	0.040	19	0.53	
	WSB 60	0.028	15	0.25	

Current explanations for inner cavities in TD's:

- Photoevaporation
- Grain Growth
- Binarity
- Planet Formation

Current explanations for inner cavities in TD's:

Photoevaporation

- Grain Growth
- Binarity
- Planet Formation

Current explanations for inner cavities in TD's:

Photoevaporation

• Binarity

Planet Formation

Current explanations for inner cavities in TD's:

- Dust "filtration/size segregation"
- Compact Outer Disk
- Large Cavity
- Gas inside the cavity
- Small (but detectable) accretion

- Dust "filtration/size segregation"

- Compact Outer Disk
- Large Cavity
- Gas inside the cavity
- Small (but detectable) accretion

- Dust "filtration/size segregation"
 - \checkmark

- Compact Outer Disk
- Large Cavity
- Gas inside the cavity
- Small (but detectable) accretion

- Dust "filtration/size segregation"
- Compact Outer Disk
- Large Cavity
- Gas inside the cavity
- Small (but detectable) accretion

- Dust "filtration/size segregation"
- Compact Outer Disk
- Large Cavity
- Gas inside the cavity
- Small (but detectable) accretion

- Dust "filtration/size segregation"
- Compact Outer Disk
- Large Cavity
- Gas inside the cavity
- Small (but detectable) accretion

2-zones cavity: a common signature in planet-forming candidates??

DM Tau

• RX_1633.9-2442

• RX_1615.3-3255

• J160421.7-213028

Next steps...

- ALMA Cycle 2 data (hopefully soon!...)
- High-Res multi-epoch spectra (UVES/VLT)
- Planet Hunting (let's hope)

ESAC

Next steps...

- ALMA Cycle 2 data (hopefully soon!...)
- High-Res multi-epoch spectra (UVES/VLT)
- Planet Hunting (let's hope)

ESAC

THANKS

*

Universidad deValparaíso CHILE

ESAC

MAD

Table 3:	Model Results	s. Fixed parame	ters	are
listed ab	ove the line.			
	Parameter	Value		
	T_{\star}	3720 K		
	R_{\star}	$1.46~R_{\odot}$		
	M_{\star}	$0.47~M_{\odot}$		
	d	200 pc		
	i	49.5°		
	PA	18.2°		
	p	3.5		
	a_{\min_1}, a_{\max_1}	$2,15\mu m$		
	$a_{\min_{2,3}}$	$0.05 \mu { m m}$		
	H_{0_1}	5 au		
	$p_{s_{1,2}}$	1		
	γ	0.3		
	$\psi_{1,2,3}$	1.15		
	M_{dust_1}	$1 imes 10^{-4}~M_\oplus$		
	R_1	0.025 au		
	a_{\max_2}	$5\mu m$		
	$a_{ m max_3}$	$1000 \mu m$		
	R_{out_1}	85 au		
	R_{in_2}	85 au		
	R_{out_2}	97 au		
	R_{cav}	97 au		
	R_C	100 au		
	M_{dust_2}	$0.7~M_\oplus$		
	$M_{\rm dust_3}$	$14.3 M_{\oplus}$		
	H_{0_2}	5 au		
	H_{0_3}	10 au		
	$\log(\Sigma_{100_1})$	$-8.20 \ [gr/cm^2]^{a}$		
	$\log(\Sigma_{100_2})$	$-2.95 \ [gr/cm^2]^{a}$		
	$\log(\Sigma_C)$	$-1.98 \ [gr/cm^2]^{a}$		