

The oldest light Planck

J.L. Puget Institut d'Astrophysique Spatiale ESTEC Feb 2018

and acoustic peaks

- Zeldovich, Kurt and Sunyaev 1968 ZhETF
- Sunyaev and Zeldovich, 1970 ApSS 7,20
- Peebles and Yu 1970, ApJ 162, 815
- Silk 1968 ApJ 151, 459
- Bond, Efstathiou, 1984, ApJ286,L45
- 1987, MNRAS 226,655
- Efstathiou, Bond, White 1992, MNRAS, 258,1

COBE background radiation and LSS in the universe

- M3 call (1993)
- 2 proposals to detect the acoustic peaks
 - Reno Mandolesi COBRAS: HEMT based not cooled
 - JLP SAMBA: Dilution cooler (A Benoit) Bolometers cooled at 100 mk Caltech
 - H Sorption cooler (JPL) + 4K cooler (UK)
 - merged into CBRAS-SAMBA \rightarrow Planck mission

Planck cryogenic system

Dilution cooler in space (Alain Benoit) Sorption Cooler Bolometers 0.1K (A. Lange, N.Coron) HEMT at 100 GHz

The 2018 HFI maps

- freq
- 100
- 143
- 217
- 353
- 545
- 857 ESTEC 8/02/20
- 30.0 aKemp 500 µKCMI 30.0 µKCMB 2000 µKcmb 100.0 3.0 MJy sr-1

5.0 MJy sr-1

30.0 µKCMB

30.0 µKCMB

30.0 µKCMB

100.0 µKcmb

POLARBEAR & ACTPol are direct BB

SPT & "preliminary" ACTPol are indirect lensing BB

The 2013 data had strong noise/syste

excesses at low *l* in Polarization

- noise limited sensitivity of Planck channels maps limited at 100, 143 and 217 GHz
- Gaussian 1/f noise mostly associated with glitches tails not removed
- strong low l excess due to leakages T into E and B
- the problem was more severe in relative terms for HFI than for LFI

• Derived from the LFI data

Magnetic field lines derived from interstellar dust polarization

ESTEC 8/02/2018

CMB geometric degeneracy

CMB alone cannot measure accurately the parameters without the assumption of flat space
having enough sensitivity to measure CMB lensing

gives a constraint on the late evolution

• adding BAO removes completely the need for the flat space prior

Multipole l

Polarization

- use of TT or add TE gives models differing by < 0.5 *
- need either WMAP or Planck low ell EE or prior
- use of EE and their low ell part only is an almost independent model
- differences associated
 - with \blacklozenge

$T(\hat{n}) \ (\pm 350 \mu K)$

$$\mathbf{B}(\hat{n}) \ (\pm 2.5 \mu K)$$

ESTEC 8/02/2018

J.L. Puget, IAS, Orsay

$T(\hat{n}) \ (\pm 350 \mu K)$

$B(\hat{n}) (\pm 2.5 \mu K)$

IHP, 21 Nov. 2015

Stacking the Planck mass maps at the positions of peaks and troughs of Cosmic Infrared Background leads to a strong detection of the mass associated with these distant star forming galaxies. This is mostly Dark Matter,

Parameter	[1] Planck TT+lowP	[4] <i>Planck</i> TT,TE,EE+lowP	$([1] - [4]) / \sigma_{[1]}$
$\Omega_{ m b}h^2$	0.02222 ± 0.00023	0.02225 ± 0.00016	-0.1
$\Omega_{\rm c} h^2$	0.1197 ± 0.0022	0.1198 ± 0.0015	0.0
$100\theta_{MC}$	1.04085 ± 0.00047	1.04077 ± 0.00032	0.2
au	0.078 ± 0.019	0.079 ± 0.017	-0.1
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.094 ± 0.034	-0.1
$n_{\rm s}$	0.9655 ± 0.0062	0.9645 ± 0.0049	0.2
H_0	67.31 ± 0.96	67.27 ± 0.66	0.0
$\Omega_{\rm m}$	0.315 ± 0.013	0.3156 ± 0.0091	0.0
σ_8	0.829 ± 0.014	0.831 ± 0.013	0.0
$10^9 A_{\rm s} e^{-2\tau}$	1.880 ± 0.014	1.882 ± 0.012	-0.1

- note the degeneracy $A_s \Phi = \frac{10^9 A_s e^{-2\tau}}{10^9 A_s e^{-2\tau}}$ is very well measured
- lensing can break the degeneracy
- best way is to use large angular scales E modes

Wiener filtered lensing potential

Nak

- from Planck TT: 67.3 +-1 Km/s/Mpc
- adding BAO: 67.6 +-0.6
- − revision by Efstathiou 2014 of Reiss 2011 with revised maser for NGC4258: 73.8 \rightarrow 70.6
- the tension with Freedman 2012(74.3) and Bennet 2014 (73.0) remains and even increases with the full mission data

- testing the predictions of the quantum origin of fluctuations
- $\Phi_{K} = -0.052 + -0.05 \text{ TT Planck alone},$
- $\Omega_K = -0.005^{+0.016}_{-0.017}$ (95%, *Planck* TT+lowP+lensing).
- Φ_{K} = -0.0008 +-0.004 (combining Planck and external data) space is flat
- $n_s = 0.9645 + 0.0049$ deviation from scale invariance 7.2 •

Inflation related parameters

- Planck alone r_{0.002} < 0.11
- $r_{0.002}$ < 0.08, *Planck* TT+lowP+BKP,
- Bicep2-Keck-Planck (95%)

 $r_{0.002} < 0.09$, *Planck* TT+lowP+lensing+ext+BKP.

PRELIMINARY, soon on

BB power spectrum level

- The Planck 353 GHz is the best all sky dust foreground tracer today
- we improve it by correcting systematic effects at very low ell
- for B-modes detection: limitation introduced the dust correction using 353
 GHz assumed to be white noise limited

