The Molecular and Dusty Universe

(ISO and) Herschel

Space Science Horizon 200: A Retrospective View Noordwijk, 8-9 February 2018 *Christoffel Waelkens, KU Leuven*

Overview

- Introduction
- Summary of conclusions
- Astronomy at IR wavelengths
- ISO and Herschel
- Science breakthroughs and highlights
- Horizons 2000: much more than the sum of its parts
- Lessons learnt

Introduction

ISO and Herschel within Horizon 2000

- A new (last?) spectral window successfully opened.
- The science goals transcend the specific IR domain and have brought together different approaches within space astronomy.
- A very fruitful cross talk has occurred between 'astronomy' and 'solar system research'.
- Typical Herschel scientists have a strong background in ground based astronomy, and also there important cross fertilization has occurred and continues.
- Herschel has been a successful test case for managing large instrument consortia and ambitious technology requirements.
- Combining Herschel and Planck has bolstered the programme.

Astronomy at IR wavelengths

- The cold ('cool') universe is the place where stars and planets are born.
- It is also the place where astro-chemistry occurs.
- Dust in the universe absorbs hot radiation, which finally emerges in the infrared.
- The expansion of the universe shifts distant radiation to infrared wavelengths.

Astronomy at IR wavelengths

Herschel

An anthology of Herschel highlights

- Understanding observationally the basic mechanisms on how stars form in the dense interstellar medium.
- Resolving the cosmic infrared background in star-forming galaxies and the detailed study of the history of star formation rates.
- Feedback between starbursts and active galactic nuclei.
- The ubiquitous presence of water, also in hot cores.
- The diversity of molecular excitation modes and their diagnostic value, in our and other galaxies.
- Remarkable results on (water in) solar-system objects, dust formation in supernovae, debris disks, outflows from old stars, lensed galaxies, ...

Star Formation matters ...

- Galaxy formation cannot be understood without incorporating a detailed theory of star formation. We have only a rudimentary grasp of such theory, however, which means that galaxy formation is destined to be a semi-phenomenological theory for the foreseeable future (J. Silk, 1997, first 'FIRST' conference at Grenoble).
- We will never fully understand planet formation if we do not understand star formation in the first place (J. Silk, 2004, Cosmic Vision Event at Unesco, Paris).

... but its (classical) physics is complex.

- What causes the pressure which competes with gravitation?
 - Turbulence?
 - Magnetic fields?
- The Herschel answer: magnetoturbulence!

Aquila/Serpens-South dark filament: A rich protocluster in the making

Spitzer/IRAC 8 µm

SPIRE 250 μm + PACS 160/70 μm

Filamentary structure of SF regions

Star formation: how it works

- Magneto-turbulence generates filamentary structures.
- These have a universal thickness of about 0.1 pc.
- Perpendicular to the filaments, matter falls in along magnetic field lines.
- Stars are born if the density exceeds a critical value.

Initial mass function of dark cores

Resolving the cosmic IR background

View that it is composed of star-forming galaxies largely confirmed.

Star formation history of the universe

- Clear description of SFR since its maximum about 10 Gyr ago.
- Not only the biggest galaxies matter: not only mergers, but also galaxies steadily growing through accretion.

0.6<z<1.1

2.9<z<4.0

log L 60 µm (L_o)

AGN – starburst feedback

• Correlation between molecular (OH) outflows and the wind from the central engine confirms that AGNs eject molecular clouds and hence

quench star formation.

Water everywhere ...

HIFI Spectroscopic Signatures of Water Vapor in TW Hydrae Disk ESA/NASA/JPL-Caltech/M. Hogerheijde (Leiden Observatory)

... also in the solar system

Interaction of stellar winds with the ISM

Impact of Herschel

Refereed papers for ESA-led space observatories

Cumulative number of papers vs calendar year after launch

ISO and Herschel within Horizon 2000

- The science goals transcend the specific IR domain and have brought together different approaches within space astronomy.
- A very fruitful cross talk has occurred between 'astronomy' and 'solar system research'.
- Typical Herschel scientists have a strong background in ground based astronomy, and also there important cross fertilization has occurred and continues.
- Herschel has been a successful test case for managing large instrument consortia and ambitious technology requirements.

Complementarity between space missions

Complementarity between space missions

'Astronomy' versus 'Solar System'

Images of isolated disks: scattered light

HD100546

Complementarity of ground and space

Complementarity of ground and space

Successes at the project level

- Building and managing large instrument consortia, with strong leadership from ESA, instrument PIs and PMs, and involved agencies.
- Combining Herschel and Planck was constraining, but finally enabled both missions to be realized within the sum of the original cost caps.
- Risks were taken at the technological level, but were overcome and did contribute significantly to innovative science.
- Observation efficiency was high, and the goal to be both a survey and an observatory mission was fulfilled.
- Pipeline and archive development essential for the mission and its legacy.

An incredible dream become true ...

... within Horizon 2000

- Thanks to
 - The 'cosmic vision' of Horizon 2000 and its developers.
 - Superb ESA staff and superb PIs, and many other people involved.
- What Herschel did in return
 - Setting the scene in the far-IR
 - Bridging communities
 - Enabling with Planck the whole programme to succeed