

ARIEL

Enabling planetary science across light-years

acteriound image credit NASA

ARIEL – ESA M4 Paris presentation .

PLANETS ARE UBIQUITOUS.

OUR GALAXY IS MADE OF GAS, STARS & PLANETS

There are at least as many planets as stars

Cassan et al, 2012; Batalha et al., 2015;

ARIEL – ESA M4 Paris presentation

EXOPLANETS TODAY: HUGE DIVERSITY

3700+ planets, 2700 planetary systems known in our galaxy

TRUTH IS STRANGER THAN FICTION!

KEY EXOPLANET QUESTIONS

- How diverse are exoplanets chemically?
- Does chemical diversity correlate with other parameters?
- How do planets form?
- How do planets evolve?

HUGE DIVERSITY: WHY?

FORMATION & EVOLUTION PROCESSES? MIGRATION? INTERACTION WITH STAR?

STAR & PLANET FORMATION/EVOLUTION

What we know: constraints from observations – Herschel, Alma, Solar System

Image credit ESA-Herschel, ALMA (ESO/NAOJ/NRAO), Marty et al, 2016; André, 2012;

THE SUN'S PLANETS ARE COLD

Some key O, C, N, S molecules are **not** in gas form

WARM/HOT EXOPLANETS

O, C, N, S (TI, VO, SI) MOLECULES ARE IN GAS FORM

CHEMICAL MEASUREMENTS TODAY

SPECTROSCOPIC OBSERVATIONS WITH CURRENT INSTRUMENTS (HUBBLE, SPITZER)

- Precision of 20 ppm can be reached today by Hubble-WFC3
- Current data are sparse, instruments not absolutely calibrated
- < 40 planets analysed
- Not enough wavelength coverage
- Degeneracy of interpretation

LARGE POPULATION OF WARM/HOT PLANETS

3.0k

 $2-4R_{\oplus}$

17.0k

>4*R*⊕

<1.25R_@ 1.25-2R_@

70

TODAY AND IN THE NEXT DECADE

TESS yields

1.4k

10⁵

 10^{4}

10³

10²

10

Sullivan et al., 2015

Number of planets

– ESA M4 Paris presentation

11

LARGE POPULATION OF WARM/HOT PLANETS

Selected out of 10,000 planets optimal for chemical observations

Parameter space to be sampled:

- Planet size (density)
- Temperature
- Stellar type
- Metallicity

The sample should have ~ 1000 planets

A CHEMICAL SURVEY OF A LARGE POPULATION

SCIENCE REQUIREMENTS: EXOPLANET RADIATION, MOLECULAR & CLOUD SIGNATURES, STAR ACTIVITY

A CHEMICAL SURVEY OF A LARGE POPULATION

SCIENCE REQUIREMENTS: EXOPLANET RADIATION, MOLECULAR & CLOUD SIGNATURES, STAR ACTIVITY

ARIEL – KEY FACTS

- 1-m telescope, spectroscopy from VIS to IR
- Satellite in orbit around L2
- ~1000 exoplanets observed (rocky + gaseous)
- Simultaneous coverage 0.5-7.8 micron
- Payload consortium: 11 ESA countries

Aiming at 10 ppm stellar flux at multiple wavelengths

Through stable instrument, external calibration & proven postprocessing analysis

ARIEL KEY SCIENCE QUESTIONS

INDIVIDUAL PLANET

- Individual planet: Instant & short-term variability
 - Chemical composition
 - Atmospheric circulation + cloud pattern
 - Equilibrium or non-equilibrium chemistry?
 - Impact with stellar environment
- Individual planet: Formation & long-term evolution
 - Elemental composition
 - Coupling interior-atmosphere
 - Impact of stellar environment & system history

ARIEL KEY SCIENCE QUESTIONS

LARGE POPULATION OF DIVERSE PLANETS

- Large population: Instant & short-term variability
 - Chemical diversity
 - Correlation chemistry other parameters
 - Correlation clouds-temperature-stellar-type
 - How fast atmospheres change through time?
- Large population: Formation & long-term evolution
 - Correlation elemental composition planet provenance
 - Correlation elemental composition stellar metallicity
 - Coupling atmosphere-interior through time
 - Transition between terrestrial planets and sub-Neptunes

(NON)-EQUILIBRIUM CHEMISTRY? ATMOSPHERIC CIRCULATION? CLOUD PATTERN?

Snap-shots of an animation available at: http://bit.ly/2kGL4Wz

19

CORRELATION WITH ANY OTHER KEY PARAMETERS?

ARIEL WILL CLARIFY CORRELATION WITH THE DENSITY

FERRESTRIAL-SUBNEPTUNES TRANSITION

ARE SUPER-EARTHS BIG TERRESTRIAL PLANETS, SMALL NEPTUNES? IS H/HE STILL THERE?

Formation scenarios for small planets

ARIEL observations for small planets

IS ELEMENTAL COMPOSITION CORRELATED ...

... TO EXOPLANET PROVENANCE OR STELLAR METALLICITY?

COLOUR-MAGNITUDE DIAGRAMS, CLOUD-CHARACTERISATION

 Colour-colour diagrams and colour-magnitude diagrams in the IR and VIS will allow to identify families of planets

DIVERSITY PROBED IN ARIEL CORE SAMPLE

PLANET SIZE, DENSITY, TEMPERATURE, STAR TYPE, METALLICITY

DIVERSITY PROBED IN ARIEL CORE SAMPLE

PLANET SIZE, DENSITY, TEMPERATURE, STAR TYPE, METALLICITY

ARIEL – KEY REQUIREMENTS

- > 0.6m² collecting area telescope, high throughput
- Diffraction limited performance beyond 3 microns; minimal FoV required
- Observing efficiency of > 85%
- Brightest Target: $K_{mag} = 3.25$ (HD219134);
- Faintest target: K_{mag} = 8.8 (GJ1214)
- Photon noise dominated
- Temporal resolution of 90 seconds (goal 1s for phot. channels)
- Average observation time = 7.7 hours, separated by 70° on sky from next target
- Continuous spectral coverage between spectral bands.

Channel Name	Wavelength (µm)	Spectral Resolution Reqt / Design	
VisPhot	0.5 – 0.55	Photometer	
FGS-1	0.8 – 1.0	Photometer	
FGS-2	1.05 – 1.2	Photometer	
NIRSpec	1.25 – 1.95	R≥10 / 20 – 25	
AIRS-Ch0	1.95 – 3.9	R≥100 / 102 – 180	
AIRS-Ch1	3.9 – 7.8	R≥30 / 30 – 64	

ARIEL – MISSION DESIGN

- Launch direct to large amplitude orbit around L2 by Ariane 6-2
 - Alternative flight profiles possible including shared launch

- Six months: transfer to L2, cooldown, commissioning and performance verification phase; followed by 3.5 years of routine science operations
- Wet Mass: < 1300kg
- Power: < 957 W
- Data Rate: 25 Gbits / day

PAYLOAD: TELESCOPE & COMMON OPTICS

- Eccentric pupil Cassegrain telescope (M1 + M2) plus off-axis paraboloidal mirror (M3) and plane folding (M4)
- Collecting area of > 0.6 m² with diffraction limited performance for wavelengths $\ge 3 \ \mu m$ across 30" FoV
- Throughput at EOL of > 78% across wavelengths $0.5 7.8 \,\mu m$
- Dichroics separate various spectral & photometric channels

PAYLOAD: TELESCOPE BREADBOARD DEVELOPMENTS

PAYLOAD: TELESCOPE DEVELOPMENTS

Monte-Carlo simulation of centroiding error for FGS for all brightness levels showing <10mas centroiding error in presence of all noise sources

PAYLOAD: AIRS

- Two channels of prism spectrometers with similar design
- Detectors baselined Teledyne H1RG and derivatives, but design open to European detector alternatives currently being developed

Hg_{1-x}Cd_xTe epilayer grown by LPE process Size 36*38 mm²

PERFORMANCE MODELLING: EXOSIM

EXOSIM: STELLAR SPOTS

STELLAR VARIABILITY: CORRECTING THE EFFECTS OF SPOTS

EXOSIM: PULSATION AND GRANULATION

STELLAR VARIABILITY: CORRECTING THE EFFECTS OF PULSATION & GRANULATION

NOISE BUDGET – FAINTEST TARGET

ARIEL IS PHOTON NOISE LIMITED FOR ALL TARGETS

GROUND SEGMENT & DATA POLICY

- ESA provided MOC and SOC are complimented and supported by distributed consortium Instrument Operations and Science Data Centre (IOSDC).
- Science community extensively engaged prior to launch and during operation in definition of target list through Science Team and whitepapers

•	Long term observation planning defined by IOSDC, reviewed throughout operations	Data Level	Description	Comments
		Level 0	Raw Telemetry	As sent from MOC to SOC
		Level 1	Raw Spectral cubes of frames	Formatted cubes of raw detector images
•	 Open Data Policy: All data released quarterly once required SNR reached 	Level 2	Extracted target spectra (star + planet)	In physical units as f(time) with instrument signatures removed
		Level 3	Individual spectra of planets	Stacking of multiple revisits & extraction of planet spectra

MISSION RESPONSIBILITIES

- Clear division between ESA / Prime & single Payload Consortium
- Responsibilities within payload are clearly defined
 - Based on modular design and test approach to simplify interfaces and management
- Ground Segment responsibility share between ESA and Consortium also well defined and mature (MOC / SOC / IOSDC)

Consortium Study Management Team

PROGRAM PLANNING

• Schedule analysis shows feasibility for launch in 2026 with appropriate margin

- Technical development to retire key remaining risks planned for early phase B
- More details on overall M4 planning from ESA presentation shortly

SYNERGIES/COMPLEMENTARITIES WITH OTHER **OBSERVATORIES**

The chemical survey of 1000 diverse exoplanets is unique to ARIEL

- Exoplanet detection missions: more planets for • ARIEL!!!!
- Gaia & PLATO will also provide a better • knowledge of the stellar environment
- Cheops will refine planet parameters •

SYNERGIES/COMPLEMENTARITIES WITH OTHER OBSERVATORIES

The chemical survey of 1000 diverse exoplanets is unique to ARIEL

- Two observatories with IR spectroscopic capabilities
 - JWST (NIRISS, NIRCAM, NIRSPEC, MIRI)
 - ELT (MICADO, Harmoni, METIS, +)

• Not dedicated to exoplanets

To be launched in 2018

JWST Science Themes

First light expected in 2024

SYNERGIES/COMPLEMENTARITIES WITH JWST

JWST CANNOT OBSERVE 1000 PLANETS

ARIEL – ESA M4 Paris presentation

WHY 10 TIMES FEWER TARGETS THAN ARIEL ?

A LARGER TELESCOPE DOES NOT MAKE A TRANSIT SHORTER...

 $(S/N)_{jwst} \propto D_{tel} * t_{obs}^{(1/2)}$ (Star Photon noise limited)

- Fixed observing time for a transit : T_{obs} = about 2 * $T_{transit}$
- JWST needs 4 instrumental settings (and then 4 transits) to cover the ARIEL wavelength range
- JWST limited time devoted to exoplanets (at best 25%)

ARIEL OPTIMAL DESIGN & PERFORMANCES

61

SYNERGIES/COMPLEMENTARITIES WITH ELT

ELT CANNOT OBSERVE 1000 PLANETS

- In the 3 instruments of first generation, METIS (L, M bands) will be well suited to exoplanets studies complementary to ARIEL
- Combining ELT High spectral resolution (R=100 000), large collecting area and high spatial resolution
 - access to individual molecular lines \rightarrow access to line broadenings, line shifts \rightarrow rotation, weak lines (see for example Snellen et al. β -Pic b)
- High spectral resolution in the visible, near IR, (HIRES) has to wait for second generation instrumentation plan (about 2030)

SYNERGIES/COMPLEMENTARITIES WITH ELT HIGHLY COMPLEMENTARY TO LARGE, GROUND-BASED FACILITIES **E-ELT** Simulations 0.0218 0.0008 Fitted model 0.0006 Observed Signal 0.0216 0.0004 0.0002 0.0214 å 0.0000 -0.0002 2.30 2.32 2.29 2.31 Wavelength (μm) 0.0212 ARIEL spectra give the continuum 0.0210 at broad wavelength range 0.5 0.7 8 З Wavelength (µm) **ARIEL – ESA M4 Paris presentation**

EUROPE IS WELL POSITIONED TO DO ARIEL

- Serious resources invested to be at the forefront of exoplanet detection (surveys from the ground, Corot, Cheops, PLATO)
- Builds on heritage from ESA's previous successful IR and sub-millime astronomical missions:
 - Instruments on the Infrared Space Observatory (ISO),
 - Instruments on Herschel Space Observatory,
 - MIRI for the forthcoming JWST
 - the Planck thermal system
- Solar System space instruments on Venus Express, Mars Express, JUICE, Cassini, Rosetta, Mars TGO...
- 12 ERC-funded programs to interpret exoplanet spectra, predict atmospheric dynamics, chemistry, formation and structure of the interior

ARIEL – CONCLUSIONS

- ARIEL will enable us to understand why planets in our galaxy are so diverse and how they evolve
- ARIEL will do so by delivering the first chemical survey of ~ 1000 exoplanets, probing uniformly the gamut of planet and stellar parameters
- ARIEL will do for exoplanets what Herschel did for star formation
 and what ALMA is doing for disk evolution
- ARIEL science will provide a galactic perspective to the history and nature of our Solar System

Time is ripe for this endeavour and Europe is ready for it

