Turbulence Heating ObserveR

THOR team

Presenting: Andris Vaivads (Lead Scientist)
Paris 2017 July 3




Motivation

How does all the hot plasma in the Universe
get heated to high temperatures?
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THOR will explore plasma energization in space turbulence

Near Earth space




Summary

First mission dedicated to plasma energization by turbulence.

Using near Earth space as a unique laboratory for study of
fundamental plasma physics of relevance to astrophysics.

Addresses Cosmic Vision Scientific Question:
“2. How does the Solar System work?”

Comprehensive payload (4 field, 6 particle) - highest resolution
instruments ever flown in near-Earth space

Experienced team supported by
large and interdisciplinary community.
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Leonardo Da Vinci
ca 1500, Codice Atlantico, f. 74v:

"Doue la turbolenza dellacqua rigenera,
doue la turbolenza dellacqua simantiene plugho,
doue la turbolenza dellacqua siposa”

On his deathbed, Heisenberg is reported to have said":

" When I meet God, | am going to ask him two questions:
Why relativity? And why turbulence?

I really believe he will have an answer for the first. "
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History of in-situ plasma turbulence observations ~ TH® R
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Every time a new space plasma mission increases observation resolution |eess®=
new discoveries are made! 5
Belcher & Davis, JGR, 1971 Marsch et al., Chasapis et al., ApJL, 2015.
’ JGR, 1991
5 minute data: first 10s data: proton distribution 0.01s B data, 1s electron data:
: 2 function is anisotropic about the electron heating in very thin
observia_tu?c_n ﬁ;%lf\f(en V:%VGS’ magnetic field suggesting kinetic magnetic structures suggesting
magnetic field (dots) a processes are at work. dissipation

velocity (lines) correlate ' 6



Kinetic scales of plasma turbulence THER

THOR Karimabadi, H. et al., PoP, 2013
Energy flow dissipation
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Plasma turbulence dissipates at kinetic scales

heating plasma and accelerating particles.
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Required THOR measurements:
* Electric and magnetic fields
* Particle distribution functions




Kinetic numerical simulations THR

Euleriap~= Vlasov He™
— -\

# / - /

- e
- -
- o _.d"‘ II
- 5 e I

Simulations allow to explore part of the physics beyond the current observational
capabilities. THOR requires and has a strong Numerical simulation team.




THOR Science THeR

“Exploring plasma energization in space turbulence”

* Q1: How is plasma heated and patrticles accelerated?
» heating mechanism: resonant, stochastic, reconnection, etc.
« distribution throughout plasma, e.g. structures

* Q2: How is the dissipated energy partitioned?
» electrons vs protons vs heavy ions
* particle acceleration vs heating

* Q3: How does dissipation operate in different regimes of turbulence?
« different environments: solar wind, foreshock, shock, magnetosheath
« different plasma parameters: beta, temperature ratio, imbalance
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Q1: How is plasma heated and particles accelerated? Tﬁﬁﬁ

Cluster, bow shock crossing
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i - Johlander et al., ApJLett, 2016
Measurements of electric and magnetic ohlanderetal., ApJLe

fields and particle distribution functions
at kinetic scales are required.
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Q1: Electron heating at kinetic scales TH R
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Adopted from Chasapis et al., ApJLett, 2017

= MMS observations of current density (J)
and electron temperature (7,) in the
magnetosheath.

= Current density at the smallest scales
can only be resolved by single-spacecraft
techniques, i.e. it cannot be resolved by
multi-spacecraft techniques.

State of art electron measurements
are insufficient to resolve electron
scales in turbulence.
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Q1: Non-maxwellian distributions

Non-Maxwellian distributions at
Proton temperature Kinetic scales

b

THOR will make measurements of particle distribution functions and
electric and magnetic fields at kinetic scales.

space plasma show variations in proton Distribution functions evolve rapidly.
temperature at kinetic scales.
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Q1: Field-particle correlations Tlﬁ]ﬁ;ﬁ%
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THOR coordinated fields and particle measurements will allow to
distinguish the different heating mechanisms.
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Q2: How Is the dissipated energy partitioned? Tﬁfgﬁ’&
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= Alphas are more heated
relative to protons
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'Valentini+, New J. Ph}féfjf 2016

Necessary to quantify the energy partition among protons and alphas
at kinetic scales.
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Q2: Energy partition THER

Hoshino et al., PRL, 2012
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Necessary to resolve both thermal and suprathermal parts of the spectrum.
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= gpatial regions
= fast vs slow pristine solar wind
= shocks/foreshocks/sheaths
= interaction regions
= plasma regimes
" p
= T/T,
= Mach number
= turbulence properties

= fully developed vs newly generated
= different amplitude levels
= intermittency

Orbits allowing measurements in different turbulent
regions. High telemetry to allow statistical studies.
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Q3: Heating dependence on fluctuation amplitude Tlﬁﬁ;ﬁ’&

Matthaeus et al., ApJLett, 2016

PIC simulations show that ]

the relative heating of ions . 11 |
and electrons can depend ® Lo * _
on plasma parameters, like 5 "
turbulence amplitude at § -8 # o ]
kinetic scales. ° 0.0 o g w
Protons absorb a larger T 04 A o 1
fraction of the cascaded B T T T R
energy when the turbulence Turbulence amplitude at kinetic scales

IS stronger.

Necessary to explore dependence on amplitude,
intermittency and other parameters.
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Turbulence in astrophysical plasmas
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Turbulent heating in galaxy clusters

Radiative cooling rate (erg cm=s™)

Zhuravleva, Nature, 2014
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Declination (J2000)

The injection problem at astrophysical shocks Tﬁ]‘gﬁ

Remote observations Kinetic simulations
Supernova remnant shock (SN 1006) Quasi-parallel shock

—41°40'

—41°50'
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Caprioli et al., ApJ, 2015
—-50
. I * |on injection to supra-thermal energies necessary for
157047 03™ 02" efficient Diffusive Shock Acceleration.

Right Ascension (J2000)

Reynoso et al., ApJ, 2013 * Injection driven by turbulence at kinetic scales.

THOR high-quality measurements of particle distribution functions can
help obtaining a realistic injection model for astrophysical shocks.



Kinetic instabilities in collisionless accretion disks THER

Magneto-Rotational Instability (MRI)

responsible for angular momentum Kinetic-scale plasma instabilities strongly affect MRI
transport and particle energization

Kinetic simulation Solar wind in situ observations
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THOR high-quality measurements of
distribution functions can help to more
Kunz et al.,PRL, 2016 realistically model kinetic-scale instabilities in
astrophysical objects.
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Laboratory plasma THER

TORPEX (SPC)

Swiss Plasma Center (SPC), EPFL, Lausanne
Basic Plasma Science Facility (BaPSF), UCLA
Princeton Plasma Physics Laboratory
Max-Planck-Institut fir Plasmaphysik, Minchen
Endorsement from ltalian laboratory plasma
community (CNR letter)

LAPD (UCLA)

Laboratory plasma experiments in synergy

with the THOR measurements will allow to

obtain a more comprehensive pictures of
plasma physics at kinetic scales.
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Systematic exploration of solar wind and shocked solar wind regions reflecting different
types of turbulent environments leads to knowledge of astrophysical importance,




Operations, Scientist in the Loop

Burst collection
v Survey data (science quality lower enabled

resolution) and Burst data (highest
resolution) saved on-board (~10TB). |
v" All Survey data transmitted to ground Selected burst
and used to select Burst data for intervals
downlink by Scientist In The Loop. \
v Guest Investigator program open to
other communities.

THOR maximizes science return with efficient and flexible
selection of burst data.
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Scientific measurement requirements
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THOR shall resolve: plasma distribution functions at kinetic scales of electrons and
mass-resolved ions, 3D electric and magnetic fields at plasma frequency.
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Key required improvements TR

Mission Scientific Measurement Requirements
Fields Particles
Rl R2 R3 R4 R5 R6 R7 R8 R9
THOR e 6 o6 o o o o o o
Cluster o o O
MMS o O O e O ®
Solar Orbiter o @ @ ®
SPP o @ o) o
Wind o) ®

R1 - High EM field cadence
R2 - High EM field sensitivity
R3 - High EM field accuracy
R4 - phase velocity

+ Wave and electron correlation up
to electron plasma frequency,

+ Large on-board mass memory for
selective downlink.

+ Optimized orbit for sampling of
the key science regions.

RS - ion composition at high cadence

R6 - particle moments at high cadence

R7 - thermal distribution functions at high cadence
R8 - suprathermal distribution functions

RO - energetic particles



Flelds instrument consortium

SCM
B field 3D AC

B field 3D DC

EFI-HFA

E field 3D AC FWP ! EFI-SDP
Fields & Waves Processor E field 2D DC/AC
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E field accuracy THeR

— Geotail
= Strong contamination by wake

| Cluster
effects for spacecraft with
. . MMS
spin plane close to the ecliptic

plane.

= Sun-pointing spacecraft
enables high accuracy
measurement of electric field
as the E field booms will not
pass through the spacecraft
plasma wake.

THOR

High accuracy electric field measurements are required to quantify
energy dissipation in plasmas.
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B sensitivity THR

Turbulence level vs search coil sensitivity

109

[ ITypical SW turbulence
THOR SCM prototype (LPC2E)

= (Cluster has state-of-art search coil 102| ——Cluster STAFF noise (in flight)| |
magnetometer to measure AC B
field. 0
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= |t could resolve only the strongest
magnetic turbulence at electron
Kinetic scales in pristine solar wind.

B-field spectral density nT2/Hz
'—l
S

* THOR search-coil magnetometer o dectig | Fatiy
would be more sensitive. 012l scales Kinetic scales
10t 10° 10! 102 10°

frequency [Hz]

Sahraoui et al., 2010; Alexandrova et al., 2012

High sensitivity search-coil magnetometer enables studies of electron
scale turbulence in pristine solar wind.
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TEA
Turbulence
Electron Analyser

EPE
Energetic
Particle Experiment

Particle IMS
Processing Unit lon Mass Spectrometer



Virtual Instrument Team THER
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Simulations of instruments TEA, CSW and IMS shows that expected count rates of
the instruments are adequate to address the THOR science.




Payload consortium THOR

INTERFACE
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Simple interfaces, simple management and simple operations.
Payload operated as a single experiment

33




ESA Study

Team
[ [ I [ |
Science
Payload Industry WG -

S1TP AL THOR worksheb @Barcelona 2016-Sep
| Numerical | | e | Electromagnetic

simulations cleanliness (EMC)
| Virtual || | Particles L Science ground

instruments segment (SWAG)

— Science team. 300+ scientists.
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THOR will revolutionise our :
. understanding of turbulent A, )

energisation in astrophysical and
laboratory plasmas.
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I THOR will operate in the near-Earth
environment, an ideal plasma
laboratory, and use uniquely

capable instruments to provide all
required measurements.




Links THR

« THOR web page: htip://thor.irfu.se

* THOR YouTube channel with movies: https://www.youtube.com/channel/UCRnkOyFY-
ebM vCzhZ0QL5Q

* THOR Twitter: @ESA _THOR
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http://thor.irfu.se/
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https://twitter.com/esa_thor?lang=en

