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Where to get everything

To get all of the material (slides, code, exercises):

git clone --recursive

https://github.com/eggplantbren/Madrid
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Book recommendations etc.

See this web page which I wrote for my incoming research

students.

https://www.stat.auckland.ac.nz/˜brewer/

student-resources.html
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Probability

Probability is a mathematical framework that has two main

applications:

(1) Describing proportions of sets.

(2) Describing the plausibility of statements.

(1) is associated with ‘frequentist’ statistics, and (2) is

‘Bayesian’. Both are valid. The kind of ‘frequentism’ I disagree

with is the denial of (2), not the acceptance of (1).
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The two rules of probability — general versions

For any propositions/statements X , Y , and Z , we have the sum

rule:

P(X ∨ Y |Z ) = P(X |Z ) + P(Y |Z )− P(X ,Y |Z ) (1)

and the product rule:

P(X ,Y |Z ) = P(X |Z )P(Y |X ,Z ). (2)
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Easier versions

The easy sum rule:

P(X ∨ Y ) = P(X ) + P(Y ) (3)

when X and Y are mutually exclusive (they cannot both be

true, i.e., they are two alternative hypotheses).

The easy product rule:

P(X ,Y ) = P(X )P(Y |X ). (4)

for any statements X , Y .
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Bayes’ rule

From the product rule and commutativity of logical and:

P(H|D) =
P(H)P(D|H)

P(D)
(5)
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Special properties

Sometimes probability assignments make pairs of statements

independent. In this special case, the product rule reduces to:

P(X ,Y ) = P(X )P(Y ) (6)

Sometimes probability assignments make pairs of statements

mutually exclusive. In this special case, the sum rule reduces

to:

P(X ∨ Y ) = P(X ) + P(Y ). (7)

Brendon J. Brewer Probability and (Bayesian) Data Analysis



Bayes’ rule — most useful form

For a set of mutually exclusive and exhaustive (i.e., they’re

alternatives) hypotheses {Hi},

P(Hi |D) =
P(Hi)P(D|Hi)∑
i P(Hi)P(D|Hi)

. (8)

P(Hi) are the prior probabilities

P(D|Hi) are the likelihoods

The denominator, P(D) is the ‘marginal likelihood’ or

‘evidence’.
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Updating Probabilities: Example

A patient goes to the doctor because he as a fever. Define

H ≡ “The patient has Ebola”

¬H ≡ “The patient does not have Ebola”.
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Updating Probabilities: Example

Based on all of her knowledge, the doctor assigns probabilities

to the two hypotheses.

P(H) = 0.01

P(¬H) = 0.99

But she wants to test the patient to make sure.
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Updating Probabilities: Example

The patient is tested. Define

D ≡ “The test says the patient has Ebola”

¬D ≡ “The test says the patient does not have Ebola”.

If the test were perfect, we’d have P(D|H) = 1, P(¬D|H) = 0,

P(D|¬H) = 0, and P(¬D|¬H) = 1.
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Updating Probabilities: Example

The Ebola test isn’t perfect. Suppose there’s a 5% probability it

simply gives the wrong answer. Then we have:

P(D|H) = 0.95

P(¬D|H) = 0.05

P(D|¬H) = 0.05

P(¬D|¬H) = 0.95

Brendon J. Brewer Probability and (Bayesian) Data Analysis



Updating Probabilities: Example

Overall, there are four possibilities, considering whether the

patient has Ebola or not, and what the test says.

(H,D)

(¬H,D)

(H,¬D)

(¬H,¬D)
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Updating Probabilities: Example

The probabilities for these four possibilities can be found using

the product rule.

P(H,D) = 0.01× 0.95

P(¬H,D) = 0.99× 0.05

P(H,¬D) = 0.01× 0.05

P(¬H,¬D) = 0.99× 0.95

These four possibilities are mutually exclusive (only one of

them is true) and exhaustive (it’s not “something else”), so the

probabilities add up to 1.
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Updating Probabilities: Example

The test results come back and say that the patient has Ebola.

That is, we’ve learned that D is true. So we can confidently rule

out those possibilities where D is false:

P(H,D) = 0.01× 0.95

P(¬H,D) = 0.99× 0.05

P(H,¬D) = 0.01× 0.05

P(¬H,¬D) = 0.99× 0.95
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Updating Probabilities: Example

We are left with these two possibilities.

P(H,D) = 0.01× 0.95

P(¬H,D) = 0.99× 0.05

It would be strange to modify these probabilities just because

we deleted the other two. The only thing we have to do is

renormalise them, by dividing by the total, so they sum to 1

again.
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Updating Probabilities: Example

Normalising, we get

P(H|D) = (0.01× 0.95)/(0.01× 0.95 + 0.99× 0.05) = 0.161

P(¬H|D) = (0.99× 0.05)/(0.01× 0.95 + 0.99× 0.05) = 0.839
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Moral

Bayesian updating is completely equivalent to:

Writing a list of possible answers to your question

Giving a probability to each

Deleting the ones that you discover are false.

It just seems more complicated than this because we often

apply it to more complex sets of hypotheses.
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Basic Bayesian exercises

Do exercise set 1.
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