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Probability Distributions

Suppose a quantity X might be 1, 2, 3, 4, or 5, and we assign
probabilities of 1

5 to each of those possible values. There is
some terminology:

X is called a ‘random variable’ (not often by me)
{1,2,3,4,5} is called the ‘sample space’, ‘hypothesis
space’, or ‘parameter space’
p =

{1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

}
is the ‘probability distribution’ for x . In

this case, it is a discrete uniform distribution.

The probability distribution is often written as P(X = x) =
(some function of x).
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Properties of discrete probability distributions

Normalisation:∑
x P(X = x) = 1.

Expected value:
E(X ) = 〈X 〉 =

∑
x xP(X = x)

Variance:
Var(X ) = E

(
(X − E(X ))2) =∑x(x − E(X ))2P(X = x)

Standard deviation:
sd(X ) =

√
Var(X )

The expected value and sd describe the center and width of the
distribution respectively.
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Shorthand notation

P(X = x) is cumbersome. x is also just a dummy variable.
Common shorthand notation: Use p(x) instead, equivocate
between the quantity itself and the dummy variable. E.g.:

E(x) =
∑

xp(x) (1)
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Numerical handling

Numerical handling of discrete probability distributions for a
single quantity:

xs = np.arange(5, 21) # Grid of possibilities
ps = xs**2 # Not normalised
ps = ps/ps.sum() # Normalise it
plt.bar(xs, ps) # Plot it

# Expected value and variance
ex = np.sum(xs*ps)
variance = np.sum(ps*(xs - ex)**2)
np.sum(ps[xs >= 10]) # P(x >= 10)
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Common discrete distributions

Here are some common discrete distributions:

Discrete Uniform (which one is it?)
Binomial (how many successes out of N quasi-identical
trials?)
Poisson (how many occurrences of rare event?)
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Astronomy uses for Discrete Uniform

The number of emission lines in this spectrum is somewhere
from 0 to 100, and I don’t know the number.
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Astronomy uses for Binomial

Suppose it is known (or hypothesised) that 30% of stars of a
particular type exhibit a certain kind of oscillation signal. In a
new sample of N = 100 such stars, let x be the number that
have the oscillation.

Then x ∼ Binomial(100,0.3).

I set a probability equal to a frequency here. What implicit assumption am I making?
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Astronomy uses for Poisson

The intensity of an X-ray source is such that you would expect
to detect λ photons per minute. Let x be the actual number of
photons you observe in a minute.

x |λ ∼ Poisson(λ) (2)

p(x |λ) = λxe−λ

x!
(3)

where λ ≥ 0 and x ∈ {0,1,2,3, ..., }.
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Three Poisson Distributions
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Continuous distributions

These are characterised by a continuous hypothesis space
(e.g. “all real numbers”) and a probability density function
(PDF).

For example, normal/gaussian distributions:

X |µ, σ ∼ Normal(µ, σ2) (4)

fX (x) =
1

σ
√

2π
exp

[
− 1

2σ2 (x − µ)
2
]

(5)

fX (x) is the full notation favoured by many statisticians. You can
also just write f (x) or p(x) (and not having any upper-case X ).
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Properties of continuous probability distributions

Just like discrete, with integrals (implicitly over all x) replacing
sums!

Normalisation:∫
p(x)dx = 1.

Expected value:
E(X ) = 〈X 〉 =

∫
xp(x)dx

Variance:
Var(X ) = E

(
(X − E(X ))2) = ∫ (x − E(X ))2f (x)dx

Standard deviation:
sd(X ) =

√
Var(X )

The expected value and sd describe the center and width of the
distribution respectively.
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Numerical handling

Numerical handling of continuous probability distributions for a
single quantity:

xs = np.linspace(-10.0, 10.0, 10001) # Grid of possibilities
ps = np.exp(-0.5*((xs - 2.0)/1.5)**2) # Not normalised
ps = ps/np.trapz(ps, x=xs) # Normalise it (integral, not sum)
plt.plot(xs, ps) # Plot it

# Expected value and variance - integrals, not sums
ex = np.trapz(xs*ps, x=xs)
variance = np.trapz(ps*(xs - ex)**2, x=xs)
np.trapz(ps*(xs >= 5.0), x=xs) # P(x >= 5)
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Common continuous distributions

Here are some common continuous distributions:

Uniform (‘lots of uncertainty’)
Normal/gaussian (commonly used for noise)
t (like a normal but with fatter tails)
Gamma (nice two-parameter family for a positive quantity)
Exponential (how long between subsequent events?)
Pareto (‘power law’)
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Astronomy uses for Uniform

There is an asteroid somewhere in an image. Where?
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Astronomy uses for Normal/Gaussian

A very common and popular model for how far ‘noise’ will cause
a measurement to depart from the true value of what is being
measured.
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Astronomy uses for t

I recommend using the t-distribution instead of the gaussian
distribution for noise if you think a heavier-tailed distribution
might be appropriate.
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Higher dimensions

Joint probability distributions can be created using the product
rule. e.g.,

p(x , y) = p(x)p(y |x) (6)

The joint distribution allows you to calculate the probability of
statements about the pair (x , y).

P
(
(x , y) ∈ R

)
=

∫
R

p(x , y)dx dy (7)
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Marginalisation

If you have a joint distribution but only care about statements
about one of the quantities, you can find the marginal
distribution:

p(x) =
∫ ∞
−∞

p(x , y)dy (8)
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Bayesian and frequentist uses

Probability distributions are used in both Bayesian and
frequentist senses.
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A frequency distribution...
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Frequency distribution of mens’ heights

Frac (x ≥ 1.8|x ∈ [1.5,2.0]) =
Frac (x ≥ 1.8, x ∈ [1.5,2.0])

Frac (x ∈ [1.5,2.0])

=

∫ 2.0
1.8 f (x)dx∫ 2.0
1.5 f (x)dx
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A probability distribution...
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Probability distribution for a single height

Plaus (x ≥ 1.8|x ∈ [1.5,2.0]) =
Plaus (x ≥ 1.8, x ∈ [1.5,2.0])

Plaus (x ∈ [1.5,2.0])

=

∫ 2.0
1.8 f (x)dx∫ 2.0
1.5 f (x)dx
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Opinion

Important!
The biggest source of confusion in statistics is the failure to
distinguish between frequency distributions which describe
populations, and probability distributions which describe
uncertainty about a single quantitya.

aCould be a single non-scalar quantity, such as (3.2, 1.7).
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Exercises

See questions2.pdf

Brendon J. Brewer Probability Distributions


