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Emphasis

I will try to emphasise the underlying ideas of the methods.

I will not be teaching specific software packages (e.g. DNest4,

emcee, JAGS, MultiNest, Stan), though I may mention them.
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Ingredients I

Bayesian inference need the following inputs:

A hypothesis space describing the set of possible answers to

our question (“parameter space” in fitting is the same

concept).

A prior distribution p(θ) describing how plausible each of the

possible solutions is, not taking into account the data.
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Ingredients II

Bayesian inference need the following inputs:

p(D|θ), describing our knowledge about the connection

between the parameters and the data.

When D is known, this is a function of θ called the likelihood.
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The Posterior Distribution

The data helps us by changing our prior distribution to the

posterior distribution, given by

p(θ|D) =
p(θ)p(D|θ)

p(D)

where the denominator is the normalisation constant, usually called

either the marginal likelihood or the evidence.

p(D) =

∫
p(θ)p(D|θ) dθ.
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Posterior Distribution vs. Maximum Likelihood

The practical difference between these two concepts is greater in

higher dimensional problems.
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Transit Example

This example is quite simple, yet it is complex enough to

demonstrate many important principles.

It is also closely related to many astronomical situations!
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Transit Example
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Related to the transit example...

Realistic exoplanet transits

Finding emission/absorption lines in spectra

Finding stars/galaxies in an image

¡Y mucho más!
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Transit Example: The Truth

The red curve was:

µ(t) =

{
10, 2.5 ≤ t ≤ 4.5

5, otherwise.
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Transit Example: The Truth

The red curve was:

µ(t) =

{
10, 2.5 ≤ t ≤ 4.5

5, otherwise.

and the noise was added like this:

# Add noise

sig = 1.

y += sig*rng.randn(y.size)
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Transit Example: Inference

Let’s fit the data with this model:

µ(t) =

{
A, (tc − w/2) ≤ t ≤ (tc + w/2)

A− b, otherwise.

We don’t know A, b, tc , and w . But we do know the data D.
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Transit Example: Parameters

We don’t know A, b, tc , and w . These are our unknown

parameters. Let’s find the posterior.

p(A, b, tc ,w |D) =
p(A, b, tc ,w)p(D|A, b, tc ,w)

p(D)
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Transit Example: Problems I

The posterior is given by:

p(A, b, tc ,w |D) =
p(A, b, tc ,w)p(D|A, b, tc ,w)

p(D)

But...

How do we choose the prior, p(A, b, tc ,w)?

How do we choose the likelihood, p(D|A, b, tc ,w)?

How do we find p(D)?
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Choosing priors

The prior p(A, b, tc ,w) describes what values are plausible,

without taking the data into account.

Using the product rule, we can break this down:

p(A, b, tc ,w) = p(A)p(b|A)p(tc |b,A)p(w |tc , b,A)

Often, we can assume the prior factorises like this (i.e. the priors

are independent):

p(A, b, tc ,w) = p(A)p(b)p(tc)p(w)
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Choosing priors

Often, before we get the data, we have a lot of uncertainty about

the values of the parameters. That’s why we wanted the data!

This motivates vague priors.
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Uniform Priors

Let’s just use wide uniform priors.

e.g.

p(A) =

{
1

200 , −100 ≤ A ≤ 100

0, otherwise.

Abbreviated:

p(A) ∼ Uniform(−100, 100)

Or even more concisely:

A ∼ U(−100, 100)
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Uniform Priors

For all four parameters:

A ∼ U(−100, 100)

b ∼ U(0, 10)

tc ∼ U(tmin, tmax)

w ∼ U(0, tmax − tmin)

Where tmin and tmax give the time range of the dataset. Question:

is this legitimate? Are we using the data to set our priors?
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Sampling Distribution / Likelihood

Let’s assume “gaussian noise”:

p(yi |A, b, tc ,w) =
N∏
i=1

1

σi
√

2π
exp

[
− 1

2σ2i
(yi −m(ti ;A, b, tc ,w))2

]
.

or more concisely:

yi |A, b, tc ,w ∼ N
(
m(ti ;A, b, tc ,w), σ2i

)
.
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Transit Example: Problems II

Even if we can calculate the posterior p(A, b, tc ,w |D), it is still a

probability distribution over a four-dimensional space.

How can we understand and visualise it?
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Answer to Problem II: Monte Carlo

Marginalisation

becomes trivial

We can quantify

all uncertainties

we might be

interested in
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Answer to Problem II: Monte Carlo

e.g. Posterior mean of w :∫
wp(A, b, tc ,w |D) dA db dtc dw ≈

1

N

N∑
i=1

wi (1)

(i.e. just the arithmetic mean). Probability of being in some region

R: ∫
R
p(A, b, tc ,w |D) dA db dtc dw ≈

1

N

N∑
i=1

1 (θi ∈ R) (2)

(i.e. just the fraction of the samples in R).
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Monte Carlo

Samples from the posterior are very useful, but how do we

generate them?

Answer: Markov Chain Monte Carlo

This is not the only answer, but it’s the most popular.
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Monte Carlo

Samples from the posterior are very useful, but how do we

generate them?

https://www.youtube.com/watch?v=Vv3f0QNWvWQ
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The Metropolis Algorithm

Start at some point θ in the hypothesis space.

Loop

{
Generate proposal from some distribution q(θ′|θ) (e.g. slightly

perturb the current position).

With probability α = min
(

1, p(θ
′)p(D|θ′)

p(θ)p(D|θ)

)
, accept the proposal

(i.e. replace θ with θ′).

Otherwise, stay in the same place.

}
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Acceptance Probability

The full acceptance probability is

α = min

(
1,

q(θ|θ′)
q(θ′|θ)

p(θ′)

p(θ)

p(D|θ′)
p(D|θ)

)
(3)

We’ll usually make choices where the qs cancel out, and sometimes

we’ll choose the qs to also cancel out the prior ratio (easier than it

sounds).
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Implementing the Metropolis Algorithm

To use Metropolis on the Transit Problem, we’ll need functions to:

Generate a starting point (I like to draw the parameters from

the prior)

Make proposals

Evaluate the prior distribution at any point

Evaluate the likelihood at any point
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Coding...

Note the use of logarithms to avoid overflow and underflow.
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Random Walk Proposals

# Generate a proposal

L = 1.

proposal = x + L*rng.randn()

Problem: Efficiency depends strongly on L. The only way to know

the optimal value of L is to have already solved the problem! Oh

dear.
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Heavy-Tailed Random Walk Proposals

# Generate a proposal

L = jump_size*10.**(1.5 - 6.*rng.rand())

proposal = x + L*rng.randn()

where jump size ≈ prior width. Don’t need steps much bigger

than the prior width, may need them to be much smaller.
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Acceptance Probability

The full acceptance probability is

α = min

(
1,

q(θ|θ′)
q(θ′|θ)

p(θ′)

p(θ)

p(D|θ′)
p(D|θ)

)
(4)

For the random walk proposal, the q ratio is equal to 1. Do you

understand why?
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Proposing one parameter at a time

def proposal(params):

new = copy.deepcopy(params)

which = rng.randint(num_params) # Parameter to change

L = jump_sizes[which]*10.**(1.5 - 6.*rng.rand())

new[which] += L*rng.randn()

return new
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Useful Plots: The Trace Plot

# Trace plot of the first parameter

plt.plot(keep[:,0])
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Useful Plots: The Trace Plot
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Useful Plots: Marginal Posterior

# Marginal posterior for first parameter

# Excluding first 2000 points

plt.hist(keep[:,0], 100)
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Useful Plots: Marginal Posterior
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Comment on Histograms

If your histograms have so many points that they look perfectly

smooth, you are working on an easy problem!
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Useful Plots: Joint Posterior

# Joint posterior for first two parameters

# excluding first 2000 points

plt.plot(keep[:,0], keep[:,1], ’b.’)
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Useful Plots: Joint Posterior
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Useful Plots: “Corner” or “Triangle” Plots

I like the package corner.py by Dan Foreman-Mackey

(https://github.com/dfm/corner.py)
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Useful Summaries

Posterior distributions can be complicated. Often, we want a

simple statement of the uncertainty. This leads to:

Point estimates

Credible intervals
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Calculating Summaries

# Posterior mean and sd

np.mean(keep[:,0])

np.std(keep[:,0])

# For median and credible interval

x = np.sort(keep[:,0].copy())

# Credible interval (68%)

x[0.16*len(x)]

x[0.84*len(x)]
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Bayes’ Rule

Here is Bayes’ rule again, with the background information (or

assumptions) made explicit:

p(θ|D, I ) =
p(θ|I )p(D|θ, I )

p(D|I )

In any particular application, we make a definite choice of the prior

and the sampling distribution, as well as what θ, D, and I are.
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What is a parameter?

What is a parameter?

A quantity whose value you would like to know; or

A quantity you think you need in order to write down p(D|θ).

The latter are often called nuisance parameters. For example, in

the transit problem we might be interested only in w , but we can’t

use our “gaussian noise” assumption without also including A, b,

and tc .
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In the Transit Example

Our parameters were:

θ ≡ {A, b, tc ,w}

What was our data D? We had a data file with three columns:

times {ti}, measurements {yi}, and “error bars” {σi}. Was this all

our data D?
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Answer: No!

Only the {yi} from the data file was our data. Why? We wrote

down p({yi}|θ, I ), but we did not write down p({ti}|θ, I ), or

p({σi}|θ, I ).

Therefore:

θ ≡ {A, b, tc ,w}
D ≡ {yi}
I ≡ {{ti}, {σi}, etc.}
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Assigning Priors

When assigning our priors (and sampling distribution), it is

completely legitimate to use two out of the three columns of our

“data” file!
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Why use the log-uniform prior?

Let θ = the mass of a galaxy, in solar masses.

“Prior ignorance” might motivate this prior:

θ ∼ U(0, 1015).
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Why use the log-uniform prior?

“Prior ignorance” might motivate this prior:

θ ∼ U(0, 1015).

But this implies:

P(θ ≥ 1014) = 0.9

P(θ ≥ 1012) = 0.999.

i.e. we are not ignorant at all, with respect to some questions!
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Why use the log-uniform prior?

log10(θ) ∼ U(5, 15).

implies:

P(θ ≥ 1014) = 0.1

P(θ ≥ 1012) = 0.3

or

P(θ ∈ [1010, 1011]) = P(θ ∈ [1011, 1012]) = P(θ ∈ [1012, 1013])...
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Using the log-uniform prior in Metropolis

Easiest way: just make θ′ = log(θ) the parameter:

Define proposals, etc, in terms of θ′, which has a uniform prior

Just exponentiate it (θ = eθ
′
) before using it in the likelihood.

Let’s apply this to the w (width) parameter in the transit model.
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Using the log-uniform prior in Metropolis

Coding...
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Safety Features

In “(data) = (model) + noise” type models, be sceptical of the

gaussian noise assumption. For example, with N = 1000 data

points and σi = 1 for all i , one consequence of the sampling

distribution (really a prior) is:

P

(
1

N

N∑
i=1

(yi −m(ti ; θ)) ∈ [−0.06, 0.06]

)
≈ 95% (5)

Really? Seems a bit confident.
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Safety Features

There are many ways to do this kind of thing. This is just my

favourite. Replace:

yi |A, b, tc ,w ∼ N
(
m(ti ;A, b, tc ,w), σ2i

)
with

yi |A, b, tc ,w ∼ Student-t
(
m(ti ;A, b, tc ,w), (Kσi )

2, ν
)
.
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t Distributions from Wikipedia
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t Density

For a single variable...

p(x |ν, µ, σ) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)
σ
√
πν

[
1 +

1

ν

(x − µ)2

σ2

]− ν+1
2

Our likelihood is a product of N terms like this, and we have to

code up the log of the likelihood. Also, remember we’re scaling the

widths σ by a factor K .
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Priors for K and ν

Let’s use

log(ν) ∼ U(log(0.1), log(100)) (6)

And for K ≥ 1, let’s use

p(K ) =
1

2
δ(K − 1) +

1

2
e−K . (7)
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Prior for K

The prior

p(K ) =
1

2
δ(K − 1) +

1

2
e−(K−1). (8)

implies K might be precisely 1, or not. Computationally, there are

two approaches:

Make a K = 1 model and a K 6= 1 model, run them

separately with a method that calculates marginal likelihoods

(e.g. Nested Sampling)

Make a single model which includes both possibilities.
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Prior for K
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Prior for K

The prior

p(K ) =
1

2
δ(K − 1) +

1

2
e−(K−1). (9)

can be implemented by using uK as a parameter with a U(0, 1)

prior, and letting

K =

{
1, uK < 0.5

1− log (1− (2uK − 1)) , otherwise.
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Relationship between K and uK
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Let’s implement this and find the posterior probability that K = 1.
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