Question Set 2 — Probability Distributions

Question 1

Photons arrive from a source at a typical rate of $\lambda=10$ per second. In any time interval of length t, the number x of photons has a Poisson distribution with parameter λt. Non-overlapping time intervals are independent.
(a) Numerically verify that the expected value of x for a one-second time interval is 10 and the standard deviation is $\sqrt{10}$.
(b) Find the probability that there are exactly 10 photons in each of two consecutive one-second intervals.

Question 2

A "standard normal" distribution (with mean zero and standard deviation 1) has probability density function

$$
\begin{equation*}
p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right) . \tag{1}
\end{equation*}
$$

(a) Make a grid in Python (or whatever language you like) and plot the PDF.
(b) Numerically calculate $P(x \in[-1,1])$. You might recognise the number as a 'one-sigma confidence level'.
(c) Numerically calculate $P(x \in[-2,2])$. You might recognise the number as a 'two-sigma confidence level'.
(d) Numerically calculate the mean and standard deviation and make sure you get something close to 0 and 1 respectively.

A t distribution has a PDF proportional to

$$
\begin{equation*}
p(x \mid \nu) \propto\left(1+\frac{x^{2}}{\nu}\right)^{-\frac{\nu+1}{2}} \tag{2}
\end{equation*}
$$

The parameter ν controls the shape of the distribution (see the plot on the Wikipedia page, which shows the effect of ν).
(e) Let $\nu=3$. Numerically calculate $P(x \in[-2,2])$.

