Question Set 3 - Parameter Estimation

Question 1

You are a customs agent. Among other things, you are supposed to prevent drugs being smuggled in packages sent into the country. A colleague finds a package containing two toys. Let the number of toys containing drugs be η. Clearly the value of η is either 0 , 1 , or 2 . You drill into one of the toys and find that it does not have drugs. Calculate the posterior distribution for η given that the tested toy did not contain drugs. Assume a (discrete) uniform prior, i.e. $P(\eta=0)=P(\eta=1)=P(\eta=2)=1 / 3$.

Question 2

An X-ray source emits photons at a steady rate, but since it's so distant, we only pick up a few photons per second. A standard probabilistic model for the arrival times of the photons is the "Poisson process". A specific prediction of this model is that, if the expected number of photons in a time interval is λ, the (discrete) probability distribution for the actual number of photons x in that interval is a Poisson distribution:

$$
\begin{equation*}
p(x \mid \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!} \tag{1}
\end{equation*}
$$

Find and plot the posterior distribution for λ given $x=5$. Use an improper \log-uniform prior proportional to λ^{-1}. You can do this numerically or analytically.

Question 3

Use the posterior distribution obtained in the previous question to calculate the predictive distribution for x^{\prime}, the number of photons observed in a different one second interval, given $x=5$. Plot the predictive distribution and compare it with what you'd get by naively assuming the best fit (maximum likelihood) value $\lambda=5$ to make the prediction.

Hint 1: Write down the probability distribution for x^{\prime} given λ and x, and then marginalise out λ.

Hint 2: You may need to do some numerical integration.

