
Question Set 3 — Parameter Estimation
Solutions

Question 1

There are two ways to approach this. One is to consider the three hypotheses, η = 0, η = 1,
η = 2 in turn, and to assign likelihoods by direct reasoning, like in the first set of questions.
However, since this is in the parameter estimation section, I’ll use a more parameter-estimation-y
style here.

First, the prior for η is uniform over its parameter space {0, 1, 2}. To be lazy, we can just write
this as

p(η) ∝ 1. (1)

We can think of the data as being the number of ‘successes’ out of just one ‘trial’ of an experiment
where a toy is chosen and tested for drugs. If success means drugs were found, and failure means
drugs were not found, then the sampling distribution for the number of successes out of the
single trial is

x|η ∼ Binomial
(

1,
η

2

)
. (2)

The binomial distribution in this case reduces to

p(x|η) = (η/2)x(1− η/2)1−x. (3)

The observed value of x was zero — the result of the experiment was zero successes out of one
trial. Therefore the posterior is

p(η|x) ∝ p(η)p(x|η) (4)

= 1× (η/2)0(1− η/2)1 (5)

∝ (1− η/2). (6)

This holds over the discrete parameter space {0, 1, 2}. Normalising the posterior gives probabili-
ties

{
2
3
, 1
3
, 0
}

.

Question 2

I’ll do things analytically, except for the plot. The likelihood is given in the question and the
prior is an improper log-uniform distribution:

p(λ) ∝ λ−1. (7)

1

By Bayes’ rule, the posterior is proportional to the prior times the likelihood, i.e.,

p(λ) ∝ λ−1 × λ5e−λ (8)

∝ λ4e−λ (9)

where I have dropped the denominator from the likelihood because it is a factor that does not
depend on λ. It’s really easy to plot the un-normalised posterior in Python. You can also
normalise it numerically if you like.

import numpy as np

import matplotlib.pyplot as plt

Lambda grid

lamb = np.linspace(0.0, 20.0, 10001)

Un-normalised posterior

post = lamb**4 * np.exp(-lamb)

Plot

plt.plot(lamb, post)

plt.xlabel("$\\lambda$")

plt.show()

Here is my plot of the un-normalised posterior. By the way, it’s a gamma distribution!:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

1

2

3

4

Question 3

Since I didn’t teach prediction, I don’t expect this to be obvious. You might recognise some of
the steps from Coryn’s lectures, though.

2

Let x′ be the ‘next’ data point. We want to know x′, and we do know x. Therefore, it would be
good to get the distribution

p(x′|x) (10)

and that is what we will get — it’s called a ‘posterior predictive distribution’. We can get it
by introducing λ, and then marginalising it out again, i.e., by writing p(x′|x) as the marginal
distribution of x′ that you would obtain from the joint distribution of x′ and λ:

p(x′|x) =

∫
p(x′, λ |x) dλ. (11)

The next step is to use the product rule to decompose the joint distribution inside the integral.
It becomes a product of two terms, one of which is the posterior which we already have, and
the other is the distribution we would use to predict x′ if we in fact knew λ — ultimately, a
Poisson distribution (this also assumes conditional independence).

p(x′|x) =

∫
p(λ|x)p(x′|λ, x) dλ (12)

=

∫
p(λ|x)p(x′|λ) dλ (13)

=

∫
p(λ|x)

λx!e−λ

x′!
dλ. (14)

I’ll now compute this numerically:

Normalise the posterior

post = post / np.trapz(post, x=lamb)

Lambda spacing for integration purposes

dl = lamb[1] - lamb[0]

Set of possibilities for new data

x_prime = np.arange(0, 20)

predictive = np.zeros(len(x_prime))

Needed for factorial

import scipy

import scipy.misc

Loop over lambda values, accumulating the integral

for i in range(len(lamb)):

predictive += dl*post[i]*lamb[i]**x_prime*np.exp(-lamb[i])\

/scipy.misc.factorial(x_prime)

Plot the posterior predictive distribution

plt.bar(x_prime, predictive, alpha=0.2,

label="Posterior predictive")

3

Plot what it would be if we assumed the maximum likelihood

estimate of lambda (5) was true

plt.bar(x_prime,

5.0**x_prime*np.exp(-5.0)/scipy.misc.factorial(x_prime),

alpha=0.1, label="Based on $\\hat{\\lambda}=5$")

plt.xlabel("x'")

plt.ylabel("Probability")

plt.legend()

plt.show()

Here is the plot:

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x′

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
ob

ab
ilit

y

Posterior predictive
Based on = 5

The Bayesian predictive distribution has heavier tails because it incorporates the reality that λ
is not known precisely.

4

