
Question Set 4 — Metropolis and Nested Sampling
Solutions

Question 1

My version of straightline.py is now given in the NSwMCMC repository at https://github.

com/eggplantbren/NSwMCMC, so get the latest version of that. The dataset is the distance from
which people could read a road sign, as a function of age. Age is associated with worse eyesight,
as you’d expect.

In the code, I parameterised the noise standard deviation using lnσ instead of σ, as lnσ has a
uniform prior, and this is a little neater than parameterising it as σ and using p(σ) ∝ σ−1.

To run plain metropolis.py on this problem, edit the import statement which by default
imports things from transit model, so that it imports the functions from straight line.
Then execute plain metropolis.py. When plain metropolis is imported, it will plot the
data, and you’ll have to close that plot before the rest of the code will run.

To compute posterior summaries, such as the posterior means and standard deviations, just
load posterior samples.txt. After excluding burn-in, I got

m = −3.00± 0.42 feet per year (1)

b = 576± 24 feet (2)

σ = 51.0± 7.0 feet. (3)

I had to re-exponentiate the third column of output to get σ from lnσ.

Question 2

The version with the t-distribution for the sampling distribution is given in straightline2.py.
The posterior distributions for m, b, and σ aren’t affected very much...

Question 3

I ran nested sampling.py on the straightline model, with 100 particles (that’s the default in
the NSwMCMC code). You can monitor the progress by looking at the image in progress plot.png.
The marginal likelihood was

ln p(D|straightline) = −176.23± 0.40 (4)

1



For the modified version of the model, I got

ln p(D|straightline2) = −175.85± 0.39 (5)

These are very close, taking into account the numerical uncertainties. Therefore, the data does
not imply much about whether the t or the normal distribution model is better. That’s because
there weren’t any discrepant points, and both the t and normal distributions are consistent with
that. The posterior for ν in the straightline2 model would show that the data only rules out
very low values.

Finally, it is usually not recommended to use Bayesian model comparison with naive broad
priors, like I did here. However, I used the same broad priors for most of the parameters that
the two models had in common, so I wasn’t going to unintentionally favour one of the models
solely due to the priors.

By the way, I blame Python (or at least, my inability to use Python well) for the slow speed of
these computations. Try implementing NS in C/C++/Fortran or using whatever Python tricks
I have failed to use, and it should work a lot faster!

2


