CASSINI-HUYGENS 2004-2017

Organic-rich atmosphere and surface

De-coupled icy shell Global subsurface ocean High-pressure ice

Hydrous silicate con

N. Altobelli, SSW 10, Aranjuez, 2017

15 September 2017 ~ 5 am Pacific Time

- CASSINI worked 91 s as first Saturn atmospheric entry probe!
- 8.6 deg latitude entry point
- Altitude reached: 1231 km above 1 bar level

Cassini in the broader context...

Credit N. Powell, Imperial College

3

2012

Xtra-Si Ierwor

Future Landings

2030

characterisation

JUICE

2004

Exploration

1995

1985

Deep habitats

1974

Insight

1610

Discovery

TITAN EXPLORATION HIGHLIGTS

ICY MOONS AND RINGS

• THE MYSTERIES BEHIND THE SCIENCE OF THE GRAND FINALE

TITAN: Cassini-Huygens has lifted the 'veil'

How Cassini-Huygens lifted Titan's veil : Huygens, first lander on an outer-planet moon

Atmospheric seasonal variations

ESA/C. Carreau

Equinox

Southern winter

Witnessing a season change...

Large cloud/vortex at South Pole

Complex atmospheric organic chemistry Nitrogen (~98%), Methane(~2%)

Titan's lakes and 'hydrological' cycle

Evaporation process during Northern Spring – Observations during the Solstice Mission

Methane rainfalls at equator

NIEMANN ET AL.: TITAN'S ATMOSPHERE AND SURFACE VOLATILES

Source of methane: Ice Volcanoes ?

Icy Moons

"IRREGULAR MOONS"

Hyperion

Phoebe

Ering

isolated, closed systems \rightarrow Examples of magnetospheric interactions

ICY MOONS, SATURN AND RINGS ALSO INTERACT DYNAMICALLY

$$\frac{\mathrm{d}a_{\mathrm{s}}}{\mathrm{d}t} = \frac{3k_{2\mathrm{p}}m_{\mathrm{s}}G^{1/2}R_{\mathrm{p}}^{5}}{Q_{\mathrm{p}}M^{1/2}a_{\mathrm{s}}^{11/2}} + \frac{2a_{\mathrm{s}}^{1/2}\Gamma_{\mathrm{s}}}{m_{\mathrm{s}}(GM)^{1/2}}$$

Keeler Gap

Encke Gap

Colombo Gap

DC

Maxwell Gap

Creation of waves and gaps in the rings

 \bigcirc

Saturn's and rings rotational energy is transferred via tidal torques to the moons in the form of orbital energy (moons' orbits expand) and heat (internal friction)

TN FACT, MANY OF THE ICY MOONS MAY BE BORN FROM THE RINGS...

Highest spatial resolution obtained during the Ring Orbits – Summer 2017

RING VISCOUS SPREADING MEETS ROCHE DISTANCE → RING LOOSES MATERIAL→ FORMATION OF MOONS

RINGS AND ICY MOONS (UP TO RHEA)- MAY BE GENETICALLY LINKED-MOONS THEN MIGRATE OUTWARD AND CONFINE THE RING WITHIN ITS ROCHE LIMIT

Tital energy transfer from Saturn fuels Enceladus activity

80

atomic mass

150

H₂O CO₂ N₂ CH₄ CO 91 ± 3 % wt. 3.2 ± 0.6 % wt. 4 ± 1 % wt.* 1.6 ± 0.4 % wt. < 0.9 % wt

 NH_3 , HCN, C_2H_2 , $C_3H_8 < 0.5$ % wt. (*i.e.*, detected)

10

+ Nano-silicates + H2

Hydrothermal activity at the Ocean-Core interface of ENCELADUS potentially on-going for billions of years...

Choblet et al, 2017

(Porous) core dissipation simulated for the first time

ENCELADUS

The Science of the Grand Finale Mission

RINGS AND UPPER ATMOSPHERE

SATURN'S INTERIOR, AND MAGNETIC FIELD

How did the ring form ?

What is the mass of the ring ?

Cassini Division

Α

What is the ring composition ?

D

Is the ring material flowing into Saturn's atmosphere?

SATURN GRAND FINALE OBJECTIVES (MAG)

Determine magnetic field moments to:

- Get Saturn's internal rotation rate from tilt of the magnetic field
- determine how deep the magnetic dynamo region lies

SATURN GRAND FINALE OBJECTIVES (RADIO SCIENCE GRAVITY)

- Determine gravity field moments (up to J10) to:
 - estimate size of Saturn's rocky core (the seed that attracted all the gas as Saturn was forming)
 - measure the depth of Saturn's winds
 - Ring Mass

THE PROBLEM WITH SATURN'S PERIOD OF ROTATION AND MAGNETIC FIELD

Saturn's Kilometric Radio Emission...

...not a good proxy to infer Saturn's interior rotation!

NEW RESULTS from Grand Finale Orbits

- The magnetic B field appears still perfectly aligned with the rotation axis (within 0.06 deg) → We still cannot determine Saturn's interior rotation rate
- The inner core mass of Saturn was measured to be 15 Earth masses
- The interior of Saturn appears to be made of multiple layers with different rotation rates, extending deeper than expected

THE PROBLEM WITH THE RING AGE , ITS MASS AND COMPOSITION

RING EVOLUTION...

Non-elastic collisions remove orbital energy but conserve angular momentum

- → Precursor debris 'cloud' **flattens** and **spreads** toward lowest energy level
- → Spreading time and initial mass are linked the current mass was UNKNOWN (before Grand Finale)
- → Erosion + pollution by micro-meteoroids the current flux was UNKNOWN (before Cassini)

IR thermique

RING COMPOSITION

(Before Grand Finale) –Rings appeared to be made of nearly pure water ice...

➡ So, possible old ring scenario ? (Canup, Nature, 2010)

micro-meteoroids

NEW RESULTS including Grand Finale Orbits

 The mass of the ring was found to be about ¼ Mimas mass

- The ring composition shows a significant silicate fraction
 (Passive radar data and in-situ sampling)
- The current micro-meteoroid flux erodes the rings within a short timescale preventing the old ring scenario
- Methane found in the upper atmosphere of Saturn, originating from the ring!

→ All new data are consistent with young ring scenario (captured massive body, tidal break-up)

QUESTIONS ?

