Magnetosphere – Ionosphere – Thermosphere coupling at Jupiter

Japheth Yates Mentor: Nicolas Altobelli

The Jovian system

- > Largest planet ($R_J \sim 11 x R_E$)
- Atmosphere composed of molecular Hydrogen (~90%) and Helium (~10%)
- 4 Galilean moons: Io, Europa, Ganymede and Callisto
- Magnetosphere is largest object in solar system (M_J ~ 20,000 M_E)

Credit:Nasa

The Jovian magnetosphere

- Magnetosphere is controlled by internal sources:
 - Rapid planetary rotation rate (~10 hrs)
 - Internal plasma source... Io (~1000 kg/s)

Why study the Jovian system?

Aurora:

- Main auroral emission at Jupiter is purely driven by internal processes corotation enforcement currents
- Aurora due to electromagnetic interaction with Galilean moons
- Polar auroral emission is poorly understood
 - magnetospheric dynamics e.g. plasma release
 - Solar wind driven
- A lot of variability over different timescales

Credits: J. Clarke, J. Nichols and D. Grodent

Why study the Jovian system?

Gas giant energy crisis:

- > Upper atmosphere is ~700 K hotter than expected
- > Interaction with magnetosphere likely source:
 - Joule heating
 - Ion drag
 - Precipitation heating
- Current steady state modelling efforts can't solve the problem
 - Many simplifying assumptions in models e.g. 1D/2D atmosphere
 - Time dependence not included
 - Some physics not included

What is magnetosphere-ionosphere coupling?

Describes how angular momentum and energy are transferred between a planet and its magnetosphere.

How do I study the Jovian system?

+ thermosphere) and how this coupling influences Jupiter's

 \succ coupling currents,

> aurora,

thermosphere flows,

 \succ thermosphere energy balance,

on both long and short time scales.

Simulate how Jupiter's magnetosphere couples to its upper atmosphere (ionosphere)

JASMIN 3D: 3D GCM coupled to a 1D magnetosphere

Magnetosphere

- 1-D
- 0.01 R_J resolution
- Torque balance: ionospheric and magnetospheric currents, electric fields

Optional Modules

~

Variable Pedersen conductance

Inclusion of field-aligned potentials

Local time selection (defaults to post-midnight)

ral ent	Steady state				
empo	Transient: single pulse	>			
ΕĻ	Transient: multi-pulse	~			

ionospheric electric field, Pedersen conductance

thermospheric angular velocity

Atmosphere:

3-D

٠

- 0.4° x 10° lat x long resolution
- 0.4 pressure scale height resolution
 - H₂, H and He atmosphere
- Continuity, momentum, and energy equations: Joule heating, thermospheric temperatures & thermal winds, ion drag

3D work: Main auroral emission

- > Peak auroral emission ~74°
- > Few 100 kR emission which is typically observed
- Slight poleward emission but magnetosphere is prescribed here
- > Southern emission seems to be slightly greater than northern

3D work: Temperature distributions

- Atmosphere is warmer in 3D coupled case compared to 2D
- Mid-latitude sub-corotational jet is stronger in 3D

	90 -		↑	↑\^^^_ ^^^	↑╎╵╵ │ ↑ ↑ ↑ ↓ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ _ ^	1 - -	↑	1 - . ^***.	1 111. *^^*	T 1 ↑ ★↑↑↑ ★ . ★	1 - 	↑	1 1 1 1 . ^^ & .	1 1 1 1 . ⁻ ^^ ^	1 1 1 1 ⁻ ^ ^ ^ ^ .	1	1 1 1 1	1 1 1 1 . . ^ ^ * *	↑ ↑ ↑ . ★ ↑ ↑ ↑ ★ ★ . 			↑↑↑↑↑	11111111111111111111111111111111111111	1 1 1 1 1 1 1	↑		↑		↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓			
	60 -										· · · · · · · · · · · · · · · · · · ·									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					С	Jr	re	n	ts	st	
Latitude / °	30 -																										S a	n n		ll SC	a)l	
	-30 -			1111		111 • • • • • • • • • • • • • • • • • •	111	1111							1 1	1				↑↑↑↑ ↑↑↑↑				1111	↑↑↑↑ ↑↑↑↑		P	ol	ar evi	r io	e u	
	-90 -	0 60						120						180 Longitude / °							40			, 300	1 1	1 1	360)	-			

atus:

symmetry between northern Ithern hemispheres

gions are consistent with s modelling and observations

60

Final thoughts

Conclusions:

- > Still in model development phase
- Polar region currents, aurora and neutral temperatures and winds are consistent with simpler models and observations

Future work:

- Locate and fix source of hemispheric asymmetry
- > Begin inclusion of a realistic tilted magnetosphere model

