

Pits of 67P/Churyumov-Gerasimenko What do they tell us on comets?

S. Besse, A. Guilbert-Lepoutre, C. Leyrat

European Space Astronomy Centre (ESAC), Observatoire de Besancon, Observatoire de Paris sbesse@sciops.esa.int

And the ESAC OSIRIS team And all the OSIRIS team And all the ROSETTA instruments for the science inputs

S. Besse | SSW meeting| Spain| 14/11/2017 | Slide 1 Prepared for SSW 2017

European Space Agency

67P/Churyumov-Gerasimenko

67P/Churyumov-Gerasimenko

How can your schedule go totally wrong

S. Besse | SSW meeting| Spain| 14/11/2017 | Slide 4

esa

How can your schedule go totally wrong

esa

67P/Churyumov-Gerasimenko

Applicable to other comets as well?

Comet Borrelly

3000m

Comet Hartley 2

400m

AP/NASA

Difficult to compare comets to comets

Wing-Huen et al, 2015

European Space Agency

Difficult to compare comets to comets

esa

Wing-Huen et al, 2015

What can we learn from those pits?

- We study comets because they have preserved (to a certain point) the original building blocks of the Solar System?
- By staying far away from the Sun (>2.5 AU), do they preserve their original chemistry, morphology and history of formation?
 - ✓ This is the point to be questioned here!

Are the pits providing a view inside the primitive composition and morphology of comets?

What are they, how do they form, what do they tell us?

- 1. Good characterization of the features \rightarrow Geologist background
- 2. Good understanding of the evolution processed \rightarrow Modeler background

67P/Churyumov-Gerasimenko

Vincent, Bodewits, Besse et al., 2015

→ ACTIVE PITS ON COMET 67P/CHURYUMOV-GERASIMENKO

Seth region

Seth region

Mapping

Northern Hemisphere

Colors for regions

Mapping with Faculty funding ©

Small Body Mapping Tool APL (USA)

Mapping

Southern Hemisphere

Colors for regions

Multiple views

Hapi-Seth (N) Vs. Sobek-Anhur (S)

El-Maarry et al. 2015 (N), 2016 (S)

esa

Hapi-Seth (N) Vs. Sobek-Anhur (S)

Massironi et al. 2015

Neck – Terraces – Pits/Alcoves

esa

Terraces – Neck – Pits Alcoves

How did we get there

Are the Terraces and Pits relic of an ancient world?

- Very likely but to which extend?
- □ Are the Pits primordial?
 - Most likely not primordial voids, but they tell us about the primordial heterogeneity

What do we really need to answer

- → Which mechanisms and material form the pits (e.g., sinkhole, ices, etc..)?
- → What is the time scale of formation/preservation?
- → Is 2 years of Rosetta data consistent with the formation of pits in a reasonable timescale?

ESTEC Fellowship 2012 team ©

Smart Modeler

Aurelie Guilbert-Lepoutre

Geologist

ESTEC Fellowship 2012 team ©

Geologist

S. Besse | SSW meeting| Spain| 14/11/20

One comet revolution

Ten comet revolutions

Ten comet revolutions

S. Besse | SSW meeting | Spain | 14/11/2017 | Slide 25

European Space Agency

Some ideas on what's going on (1)

Given Serving the pits from crystallization, sublimation, clathrate destabilization?

- Very unlikely within one orbit of 67P
- Difficult to reach 100m in 60 years
- Should be the main driver for morphology

Are the Pits primordial?

- Intimately linked to the layers, thus primordial origin
- But different erosion states
- Change in thermal balance
 (e.g. close encounter) could be
 a trigger for the creations of pits

What do the pits tell us?

- Erosion pattern points to compositional heterogeneities
- Within the heterogeneities, it is homogeneous (N/S, Lobes)

Maybe some conclusions (2)

Which mechanism is likely forming the pits?

- Creation by an impact very unlikely
- Ancient impact can create defects that act has point of focus for the depression evolution (by sublimation)

□ How can the pits be active if they are that old!

 Is the activity linked to the frost deposition?

- > What do the pits tell us on comets
 - That we do not understand thermal evolution of small bodies
 - That we do not understand the formation of comets

Improvements and hopefully a paper!

- Refine thermal models, smaller granularity
- Explore the link pits/layer

Maybe some conclusions (2)

Which mechanism is likely forming the pits?

- Creation by an impact very unlikely
- Ancient impact can create defects that act has point of focus for the depression evolution (by sublimation)

How can the pits be active if they are that old!

Is the activity linked to the frost deposition?

PSA archive

- > What do the pits tell us on comets
 - That we do not understand thermal evolution of small bodies
 - That we do not understand the formation of comets. All data in the

Improvements and hopefully a paper!

Refine thermal models, smaller granularity

Explore the link pits/layer