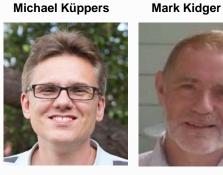
The current focus of the group is the analysis of images from the OSIRIS scientific cameras of the Rosetta mission.


Research topics are:

- Surface features of the nucleus and their interrelation with comet activity
- Properties of individually observed dust particles and implied information about the formation of the comet
- Chemical homogeneity of the nucleus and processes in the innermost coma from analysis of gas emissions
- Analysis of large data sets to find statistical properties, trends, etc., with automated analysis. ۲

Sebastien Besse

Other research topics:

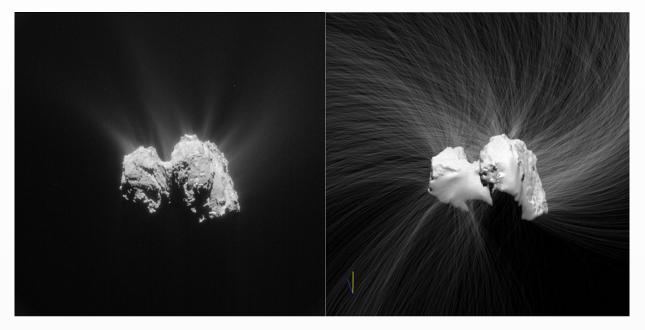
- Detection of volatiles on asteroids and dwarf planet Ceres and their interpretation ۲
- Surface properties of asteroids and their evolution with time

Julia Marín-Yaseli

Fernando Pérez

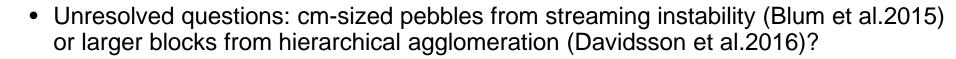
Claudio Muñoz

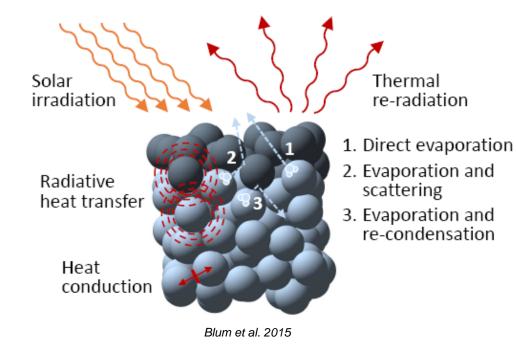
https://www.cosmos.esa.int/web/esac-science-faculty/comet-rosetta-group

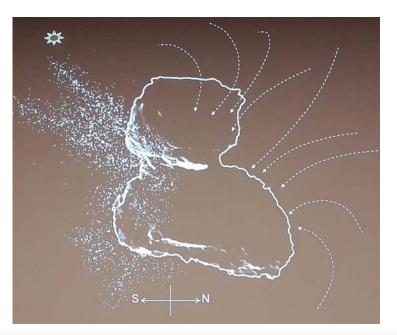


Individual particle studies in the determination of the understanding the physical and chemical processes in the coma and the imprint of primordial processes in cometary material

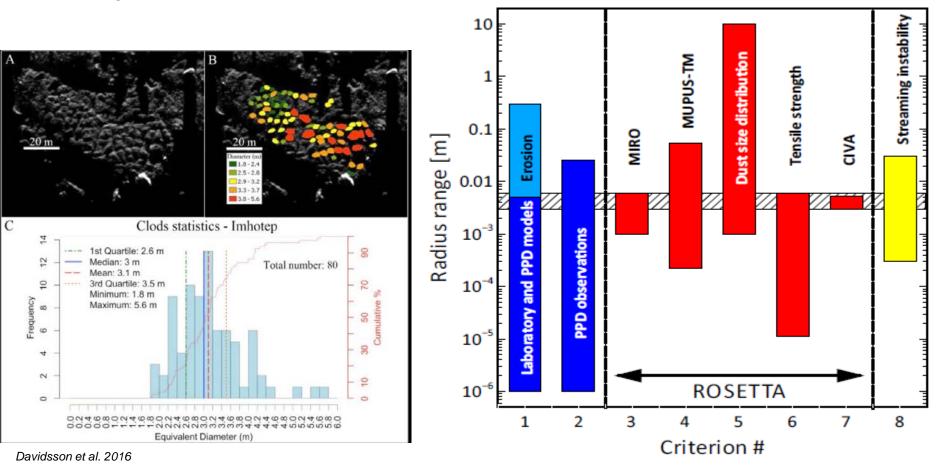
Julia Marín-Yaseli de la Parra, Fernando Pérez-López, Michael Küppers, the ESAC Small solar system bodies & Rosetta Group and the OSIRIS Team

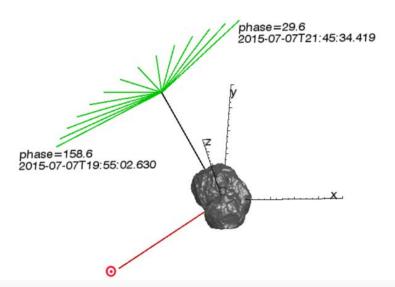

Operations Department, Directorate of Science,

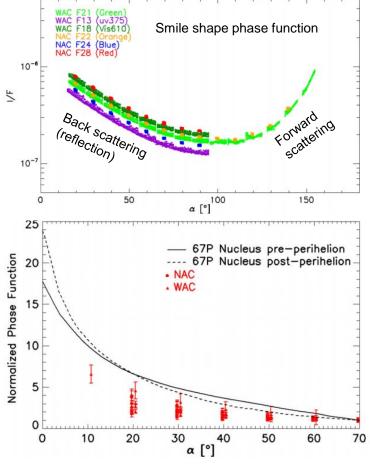

European Space Astronomy Center (ESAC), European Space Agency, Villanueva de la Cañada, Madrid, Spain



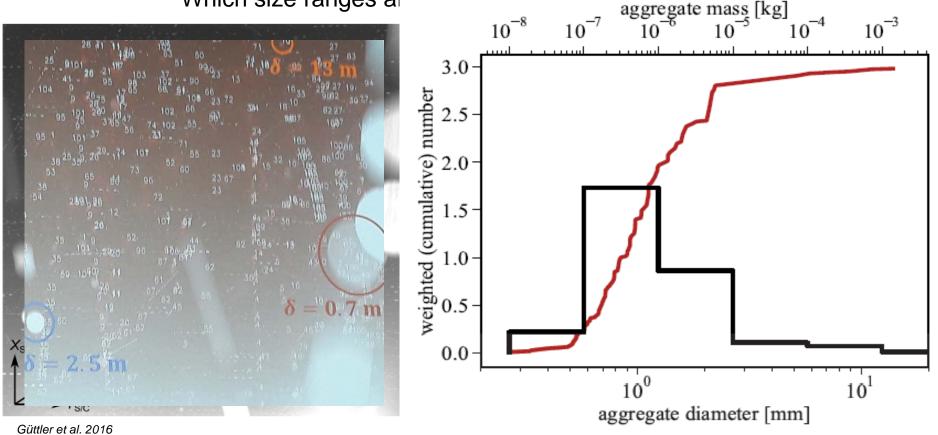
Why study dust in coma?


Dust pebble formed with refractory material & ice if comet nuclei formed by gentle gravitational collapse of a bound clump of dust aggregates. Current size distribution may answer the question. Careful! Evolutional processes...


Why study dust in coma?

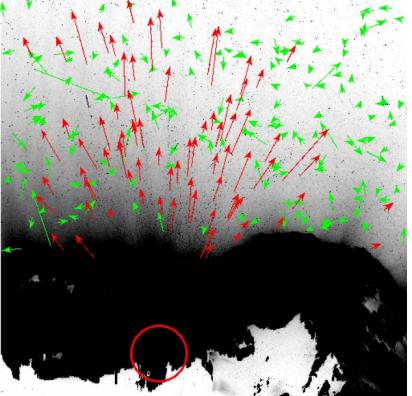

 Unresolved questions: cm-sized pebbles from streaming instability (Blum et al.2015) or larger blocks from hierarchical agglomeration (Davidsson et al.2016)?

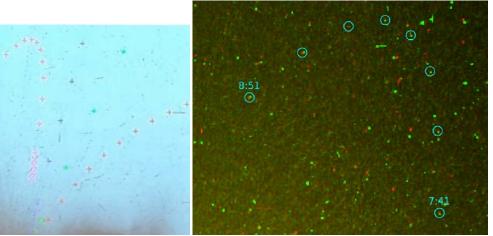
- Unresolved dust, phase function from small particles
 - overall phase function shape constant in time
 - Reflectance increases with phase angle
 - Consistent with other comets
 - Single scattering, the dominant, regardless of the distance from the nucleus
 - Background coma doesn't change its spectrum with time or distance from the comet
 - At angles < 30 nucleus redder than coma. Scattering modelling and laboratory measurements needed



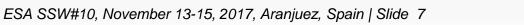
ESA SSW#10, November 13-15, 2017, Aranjuez, Spain | Slide 5

Which size ranges a


Distances 0.6 – 100 m from Rosetta


Individual particles in different size ranges (<1mm up to >1m)

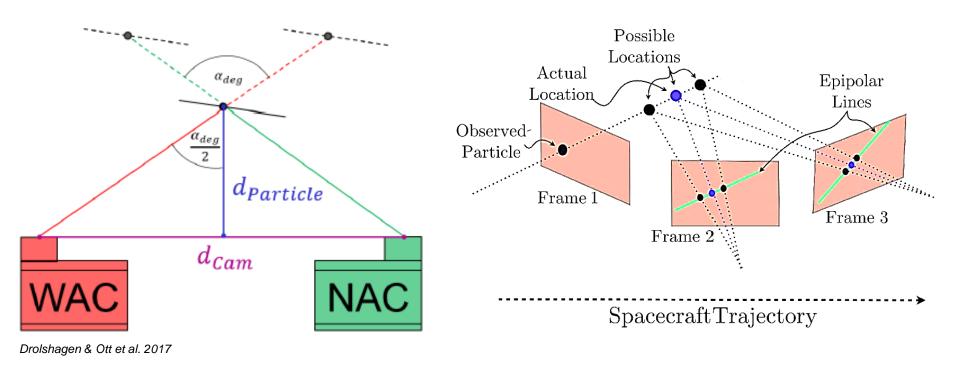
Which size ranges are dominant ? \rightarrow Systematic study


First direct measurement of the acceleration of aggregates in the innermost coma.

- Combined forces of gravity, gas drag and rocket effect.
- Temporal brightness decreased cos ice sublimation?
- Accelerations up to 10 times larger than g
- Projected velocities of aggregates ≈ 1 m/s

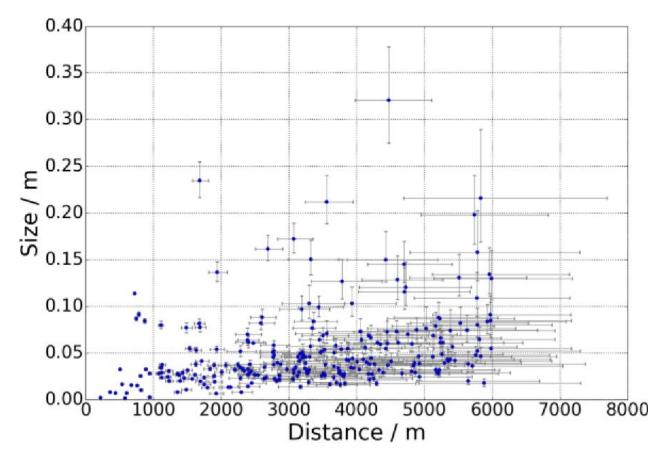
Agarwal et al. 2016

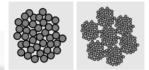
Distances 87 km from Rosetta



Individual particles in different size ranges (<1mm up to >1m)

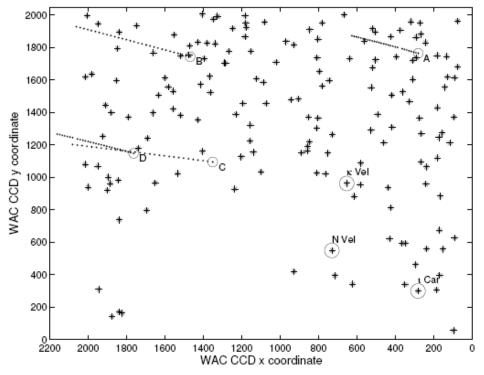
Which size ranges are dominant ? \rightarrow Systematic study

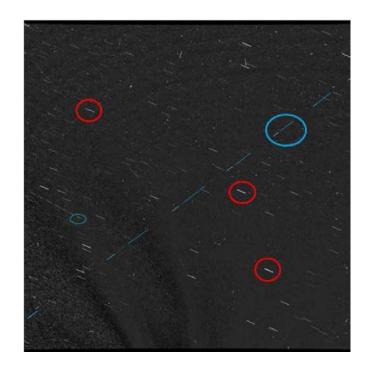


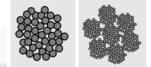

Distances 500 – 1600* m from Rosetta

• Individual particles in different size ranges (<1mm up to >1m)

Which size ranges are dominant ? \rightarrow Systematic study

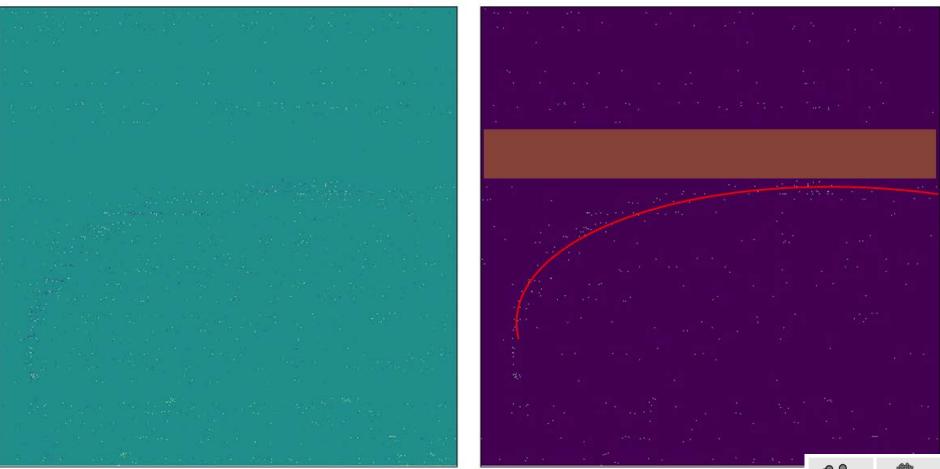




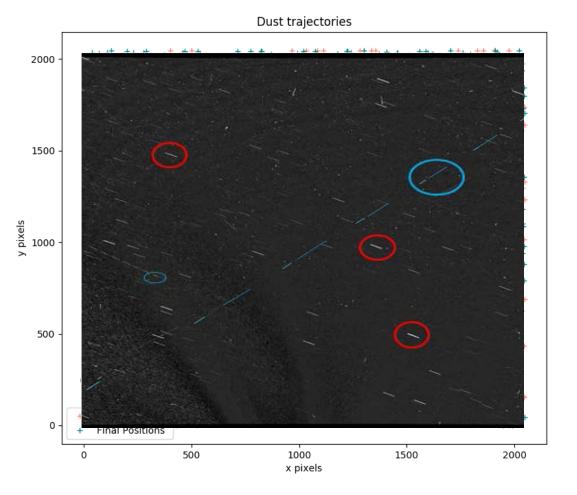


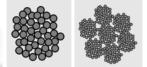
Particle trajectories: bound versus escape

- Lots of papers with assumptions, few with numerical trajectories.
- Davidsson et al.2015: Individual particle trajectories early in the mission → numerical trajectories, but limited observing time → inconclusive bound vs. escaping
- Research plan: to repeat study with particles observed later over a longer time scale


Davidsson et al. 2015

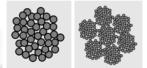
Particle trajectories: automatic processes


• Research plan: to repeat study with particles observed later over a longer time scale



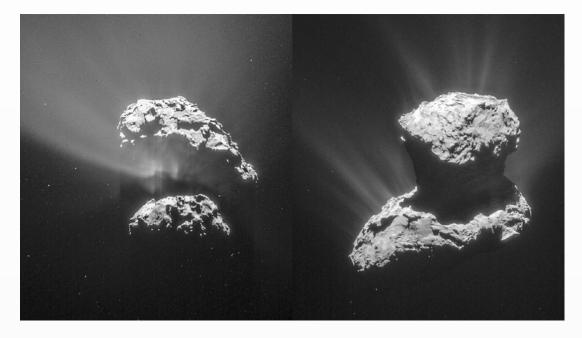
Particle trajectories: automatic processes

• Research plan: to repeat study with particles observed later over a longer time scale



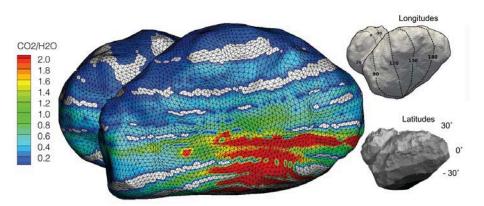
Next Steps

- "Cluster" determinations (now it takes porous groups as points)
- Testing trends algorithms (differs stars from dust from "others")
- Cleaning "noise" (limb, e.g.): the key for success is to reduce the number of false detections
- Run big sets of data (up to 100 images)
- Looking for individual segregating particles / rotating particles
- Al algorithms applied to calculation of trajectories
- Generating user friendly canvas -> PaDe SW idea
- Evaluating star trackers / other sources as sources of dust data



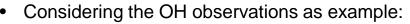
Physical processes in cometary atmospheres derived from narrowband imaging of gaseous fragment species

Fernando Pérez-López, Julia Marín-Yaseli de la Parra, Michael Küppers, the ESAC Small solar system bodies & Rosetta Group and the OSIRIS Team

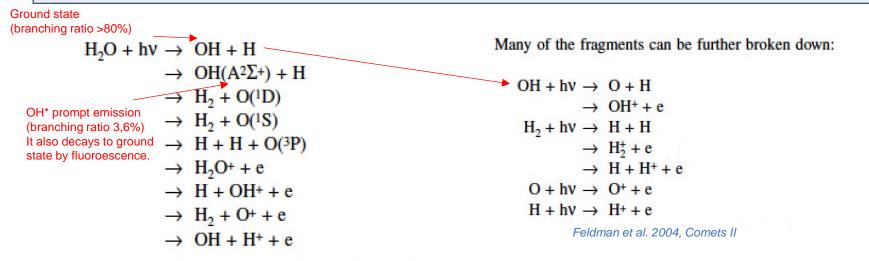

Operations Department, Directorate of Science,

European Space Astronomy Center (ESAC), European Space Agency, Villanueva de la Cañada, Madrid, Spain

Why study gas in coma?

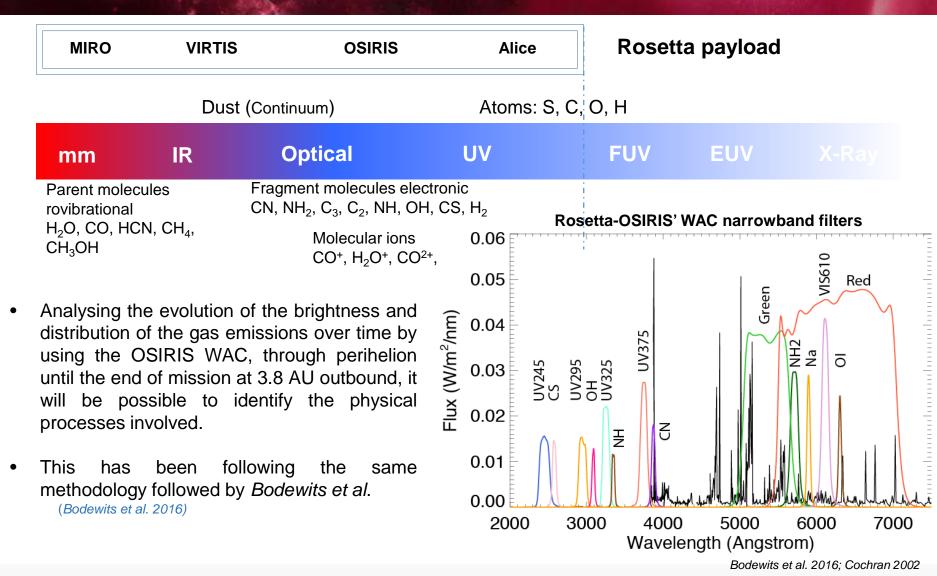


CO₂/H₂O density ratio from August 17 through September 22 mapped onto the shape model


- An important cosmogonical question about comets is whether they are heterogeneous on some spatial scale characteristic of the proto-cometesimal which accreted to form the nucleus.
- Central Question: Is heterogeneity primordial or evolutionary?
- Detailed comet nuclei close-up images suggested that heterogeneity in the coma of a comet may be related to heterogeneity of the nucleus.
- 67P Nuclei heterogeneity in terms of composition of outgassing material was found (Hässig et al. 2015, Science 347, a0276)
- The gases that come directly from the nucleus first flow through a region near the nucleus, where the gas densities are sufficiently high that collisions, and photochemical processes (photolysis of parent molecules, excitation mechanisms) change the composition of the gases.

Physical processes in coma

- **Photolysis** (or photodissociation) of parent molecules: Interaction of one or more photons with one target molecule.
- **Resonance Fluorescence (RFE)**: An orbital electron of a molecule relaxes to its ground state by emitting a photon (e.g. OH*): $A^2 \Sigma^+ X^2 \Pi$
- **Prompt Emission:** Interaction of one or more photons with one target molecule could produce OH* in the first electronically excited state which by decays to the ground state.


• **Dissociative Electron Impact excitation** (followed by prompt emission):

 $H_2O + e \rightarrow OH^* + H$

Cometary Spectra

Gas emissions vs. physical processes

Production Rates from photoprocesses

H ₂ O→ OI	
$H_2O \rightarrow OH$	
$NH_3 \rightarrow NH$	
HCN→ CN	

based on MIRO
measurements
expected NH ₃ and HCN production rates
/

H₂O production rates

- Column densities and production rates, based on standard cometary models, derived from OSIRIS images are much higher than those measured by other Rosetta instruments (MIRO, VIRTIS and ROSINA).
- A new process acting in the inner coma had to be found to explain the observations. Electron Impact Dissociation.
- *Bodewits et al.* have been able to explain most of the emissions with electron impact excitation by low energy electrons in the inner coma. Closer to the sun, generally the known processes took over in dominating the observed emissions

Emission	Known processes	New processes
CS 257 nm	F (CS ₂ , CS)	-
OH 308 nm	F (H ₂ O, OH) PD (H ₂ O,OH)?	EID (H ₂ O, OH)
NH 335 nm	F (NH ₃ , NH _{2,} NH)	EID (H ₂ O, OH ⁺)
CN 388 nm	F (HCN, CN)	$EID~(CO_2,CO_2^+)$
NH₂ 570 nm	F (NH ₃ , NH ₂)	?
Na 589 nm	RS (dust or Na-bearing molecule, Na)	-
OI 630 nm	PD (H ₂ O, O)	EID (H ₂ O, O) EID (CO ₂ , O)

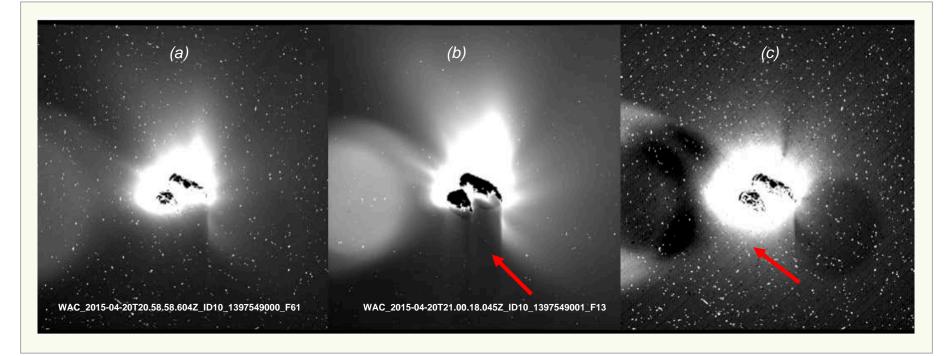
F = Fluorescence

PD = Photo-dissociation followed by prompt emission

EID = Electron Impact Dissociation followed by prompt emission

RS: Resonance Scattering

So far only part of the data are analysed. More new processes are expected to be found.


Date (Year 2015)		Jan 24 th	Mar 12 th	Apr 12 th	Apr 21st	May 13 th	Jun 10 th	Jun 29 th	Jul 14 th	Aug 4 th	Aug 14 th	Aug 24 th	Sep 7 th
Heliocentric Distance (AU)		~ 2,47	~ 2,12	~ 1,88	~ 1,81	~ 1,65	~ 1,46	~ 1,36	~ 1,30	~ 1,25	~ 1,24	~ 1,25	~ 1,28
Process (Parent, Daughter)	WAC Filter												
F (CS ₂ , CS)	CS (259 nm)			0		0							
F (H ₂ O, OH) EID (H ₂ O, OH)	OH (310 mm)				5								
F (NH ₃ , NH ₂ , NH) EID (H ₂ O, OH ⁺)	NH (336 mm)				8	*	¥	7	Þ		1		
F (HCN, CN) EID (CO ₂ , CO ₂ *)	CN (388 nm)			*	+		¥	Y	*				1
F (NH ₃ . NH ₂) TBD	HH ₂ (375 مس)			*	3	*	×	×	t		4		1
RS (dust or Na bearing molecule, Na)	Na (590.7 nm)					8			¥		1		-
PD (H ₂ O, O) EID (H ₂ O, O) EID (CO ₂ , O)	0 I (631 nm)		0	×	*	*	Y	Y	~		~		1
	UV (375 nm) dust			-*)	*	*	¥	Y		¥	4	V	4
		Known Processe	es based on ground b	ased observations		Additional proce comma, (see rel		ow by OSIRIS in the v	very inner	F = Fluorescen PD = Photo-dis FID = Electron	ce sociation followed by p Impact Dissociation fo	prompt emission	ssion

EID = Electron Impact Dissociation followed by prompt emission RS: Resonance Scattering

Emissions at large heliocentric distances

(a) This shows the original OH emission images (level 3).

(b) This shows the dust emission and the jets using UV375 filter (level 3).

(c) This shows the gas subtracted from dust. It can be seen from (b), see red arrow, the shadow of the nucleus clearly visible. This shadow is not seen in (c); showing that the gas emission is not excited by the sun light. This demonstrates that the OH emission at large distances from the sun is excited by electron impact processes.

Next Steps

- Finalising qualitative analysis and starting quantitative processing of results:
 - We have found a similar behaviour to OH for NH (more production at large heliocentric distances) that needs to be evaluated
 - We are evaluating the surface brightness radial profiles in plume-ward and anti-sunward directions to analyse the surface where the electron impact excitation processes take place.
 - The continuum removal needs to be enhanced. We should check how far our continuum removal factors are from the theoretical ones according to OSIRIS gas group analysis (see *La Forgia F., et al.*)
 - We are working on the calculation of the water production rates for OH and OI for the data sets selected at different heliocentric distances. Based on the results, the objective would be to map and compare the distribution of H₂O and CO₂ considering the new identified processes and then the analysis their implications on the homogeneity/heterogeneity of the cometary nucleus.

Thank you!

AURORA TECHNOLOGY for ESA - European Space Agency

Julia Marín-Yaseli de la Parra Mars Express Ops & Planning Engineer

Operations Division (SCI-OO)

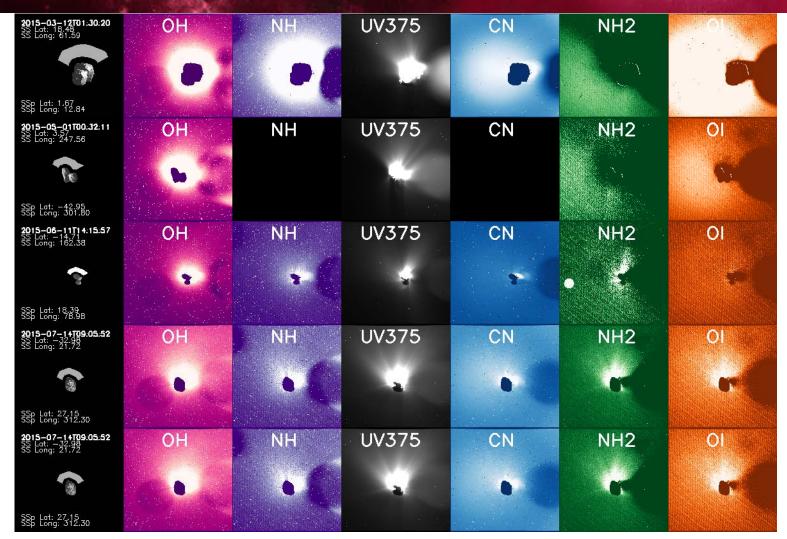
European Space Astronomy Centre (ESAC) Julia.Marin@esa.int | <u>www.esa.int</u>

https://es.linkedin.com/in/juliamp https://www.researchgate.net/profile/Julia_Marin-Yaseli_De_La_Parra2 T +34 91 81 31 577 P +34 646 53 61 81

Fernando Pérez-López BepiColombo SGS Systems Engineer Senior Ground Systems Engineer

Development Division Cross Mission Support Office European Space Astronomy Centre (ESAC) Fernando.perez@esa.int | www.esa.int

https://es.linkedin.com/in/pfperezlo https://www.researchgate.net/profile/Fernando_Perez-Lopez T +34 91 81 31 203 P +34 650 05 12 81

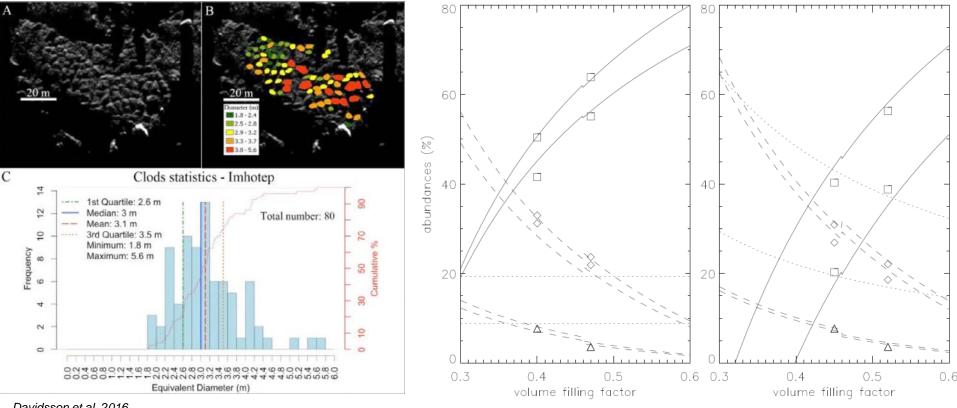

References

- Keller, H.U., Barbieri, C., Lamy, P. et al., "The scientific camera system on-board Rosetta", Space Sci Rev (2007) 128: 433. doi:10.1007/s11214-006-9128-4
- Feldman, P. D. et al., "Spectroscopic Investigations of Fragment Species in the Coma", Comets II; 425.
- Cochran, A. et al., "The Composition of Comets", Space Sci Rev (2015) 197: 9.
- S. Fornasier et al., "Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument on-board the ROSETTA spacecraft", A&A Volume 583 (November 2015), A30
- *M. Hässig et al., "Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko", Science 23 Jan 2015, Vol. 347, Issue 6220.*
- Bodewits, D., et al., "Changes in the physical environment of the inner coma of 67p/Churyumov–Gerasimenko with decreasing heliocentric distance", 2016 The Astronomical Journal, Volume 152, Number 5.
- Eriksson, A. I. et al., 'Cold and warm electrons at comet 67P', Astronomy and Astrophysics (2016) 30159.
- Shi, X, et al., "Polymorphism of cometary jets revealed in the near-nucleus coma of 67P/Churyumov-Gerasimenko", Submitted for publication.
- La Forgia F., et al., "Near-UV OH Prompt Emission in the Innermost Coma of 103P/Hartley 2", The Astronomical Journal, Volume 154, Number 5.

EID visualisation

(La Forgia, priv. comm)

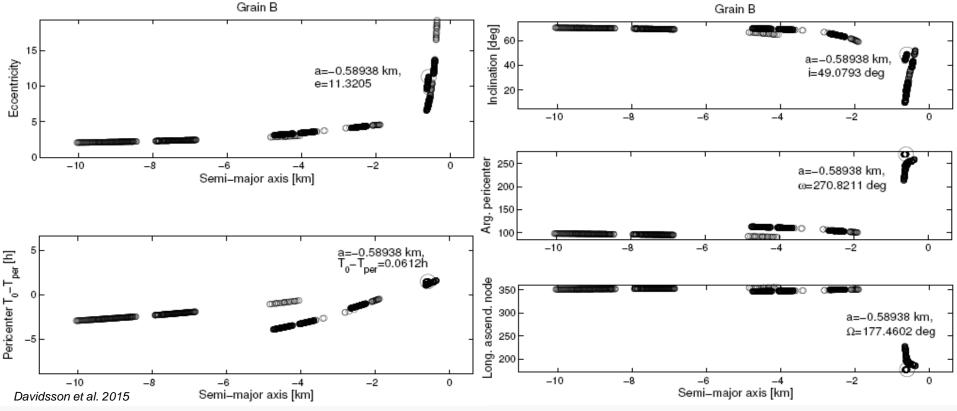
References



Davidsson et al. 2015	Orbital elements of the material surrounding comet 67P/Churyimov-Gerasimenko
Agarwal et al. 2016	Acceleration of individual, decimetre sized aggregates in the lower coma of comet 67P/ Churyumov-Gerasimenko
Güttler et al. 2017	Characterization of dust aggregates in the vicinity of the Rosetta spacecraft
Davidsson et al. 2016	The primordial nucleous of comet 67P/Churyumov-Gerasimenko
Cremonese et al. 2016	Photometry of dust grains of comet 67P and connection with nucleus regions
Fulle et al. 2016	Comet 67P/Churyumov-Gerasimenko preserved the pebbles that formed planetesimals
Blum et al. 2015	Evidence for the formation of comet 67P/Churyumov-Gerasimenko though gravitational collapse of a bound clump of pebbles
Bertini et al. 2017	The scattering phase function of comet 67P coma as seen from Rosetta/ SR instrument
Fulle on going	The phase function and density of cometary dust
Hermalyn et al. 2013	The detection, localization, and dynamics of large icy particles surrounding comet 103P/Hartlev2
Drolshagen et al. 2017	Distance determination method of dust particles using Rosetta Osiris NAC and WAC data.
Ott et al. 2017	Dust mass distribution around the comet 67P/Churyumov-Gerasimenko determined via parallax measurements using Rosetta's Osiris cameras.
Ott (IMC 2016)	PaDe: The particle detection program

Why study dust in coma?

Unresolved questions: cm-sized pebbles from streaming instability (Blum et al.2015, • Fulle et al.2016) or larger blocks from hierarchical agglomeration (Davidsson et al.2016)?



Davidsson et al. 2016

Particle trajectories: bound versus escape

- Lots of papers with assumptions, few with numerical trajectories.
- Davidsson et al.2015: Individual particle trajectories early in the mission → numerical trajectories, but limited observing time → inconclusive bound vs. escaping
- Research plan: to repeat study with particles observed later over a longer time scale

ESA SSW#10, November 13-15, 2017, Aranjuez, Spain | Slide 27

solid group

SOLID_1: irregular grain

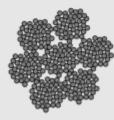
SOLID_2: spherical monomer (e.g., in computer models)

SOLID_3: chondrule and CAI

SOLID_4: dense aggregate of grains

fluffy group

FLUFFY_1: fractal aggregate (D_f < 3)



porous group

POROUS_1: porous aggregate, van-der-Waals aggregate

POROUS_2: aggregate from smaller aggregates

porous group

- 10 95 %
- aggregate
- low strength

solid group

- < 10 %
- consolidated
- high strength

fluffy group

- > 95 %
- likely fractal
- very low strength