Diffuse Interstellar Bands: The Good, the Bad, the Unique

Paule Sonnentrucker

the DIB consortium Nov 15, 2017

Outline

The Diffuse Interstellar Medium

The Diffuse Interstellar Band (DIB) Story

The DIB Database Project

Summary

The Diffuse Interstellar Medium

- Low Opacity (A_v< 6 mag) Clouds:
 => permeated by light from background hot stars
- Multi-Wavelength Spectroscopy
 =>FUV, optical, sub-mm & radio
 instrumentation

Characteristics:

- $n_H < 1000 \text{ cm}^{-3}$
- 40 K < T_{gas} < 300 K
- Mostly atomic: f(H₂) <1
- UV-photon dominated physics and chemistry

Credit: NASA/ESA, M. Robberto and the HST Orion Treasury Program Team.

The Diffuse Interstellar Medium (cont.)

A typical Galactic sight line: multi-phase system

Diffuse atomic (neutral + ionized)

1302.170 1304.857A 1048.219 1335.692 7698.974Å 1076.034Å 4300.320Å 1322.150Å HD185148 Heliocentric Velocity (km s-1)

Diffuse molecular (neutral + ionized)

Sonnentrucker et al. (2003)

Introduces degeneracies:

- when deriving cloud physical properties
- when studying chemical composition

 Need diagnostic tracers for each phase

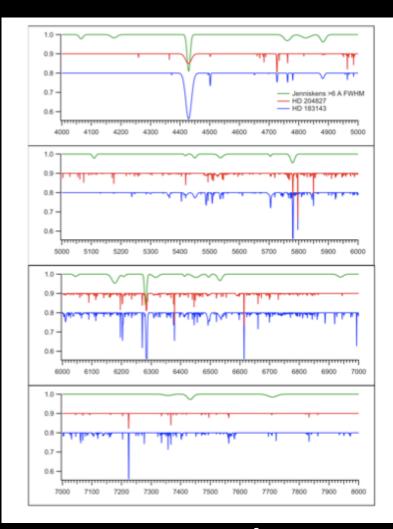
The Diffuse Interstellar Medium (cont.)

- Low Opacity (A_v< 6 mag) Gas Clouds
 - -> permeated by light from background hot stars
- Multi-wavelength Effort:
 - -> FUV, optical, sub-mm & radio instrumentation

Decades-long Lab-Astro
Collaboration!
Atomic & molecular databases

Characteristics:

- $n_H < 1000 \text{ cm}^{-3}$
- 40 K < T_{gas} < 300 K
- Mostly atomic: f(H₂) <1
- UV-photon dominated physics and chemistry


Identified in Space:

- Over 20 atomic species
- Over 160 molecules!

The Diffuse Interstellar Band (DIB) Story

Wavelength (Å)

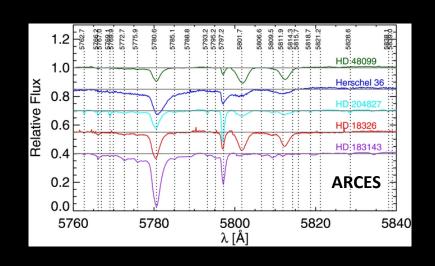
- First DIB detection around 4428 Å in ~1920s
- Detections increased DIB number to ~400 by the ~2000s
- Ubiquitous and confined in 4400-10 170 Å range
- Mostly narrow DIBs (FWHM <2Å)
- DIB strength varies with local physical conditions
- Half-dozen claimed identifications=> None confirmed

Diffuse Infamous Bands...

The DIB Database Project A 17+ year Adventure....

First Homogenous DIB Database (PI: York D.G. Chicago U.):

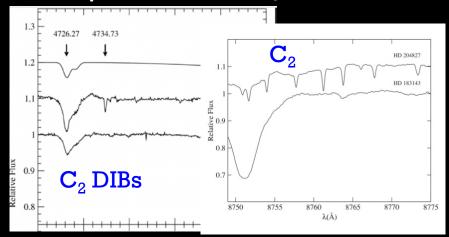
- Over 150 Galactic stars (Sp. t. O6-A3)
- Reddening range 0.02 3.5 mag
- S/N ~ 1000 at 5500 Å
- Probing known range in physical conditions



Goals:

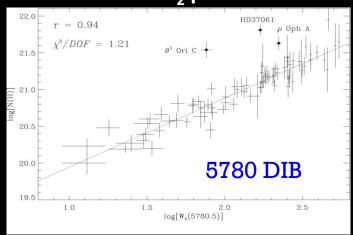
- Census of narrow, weak DIBs
- Census of Broad DIBs (FWHM>6Å)
- DIBs as diagnostics of ISM phases
- Guide DIB carriers Identification

Apache Point Observatory (NM, USA) 3.5 m telescope + ARCES (R~38 000) + DIS (R~1000) spectrographs


The DIB Database Project (cont.)

A few highlights

Narrow DIB Surveys:

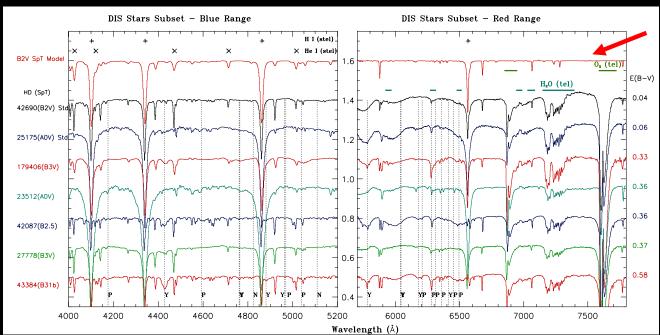

- 150 new DIBs detected => ~550 narrow features
- DIB distribution: Narrow DIBs: 92% Broad DIBs (FWHM > 6Å): 8%
- 2 distinct classes of DIBs: C₂ DIBs and Classical DIBs

18 DIBs appear when C₂ and CN present

DIB carriers seem favored in denser ISM phase traced by C₂ and CN. (Thorburn et al. 2003)

"Classical" DIBs are indifferent to C₂ presence

Most DIB carriers seem favored in the atomic phase of the ISM traced by H I. (Friedman et al. 2011)



The DIB Database Project (cont.)

A few highlights

The Broad DIB (FWHM> 6Å) Survey

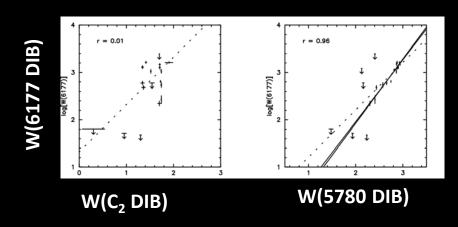
- 34 features in literature => investigated 22 features toward 21 stars
- DIB distribution:
 - \Rightarrow 10 features confirmed as DIBs
 - \Rightarrow 10 features are probable DIBs
 - ⇒ 2 features are rejected as DIBs

TLUSTY stellar model

R ~1000 data "blend Challenge"

- Stellar blends
- Telluric
- Narrow DIBs
- ISM lines

Sonnentrucker et al. (2017, ApJ submitted)


The DIB Database Project (cont.)

A few highlights

The Broad 6177 Å DIB Characteristics:

- FWHM(6177) = 30 +/- 5Å
- Steady increase of band strength W(6177)=> no saturation
- Correlation with 5780 DIB: Yes
- Correlation with C₂ DIB: No

=> 6177 Å DIB carrier favored in H I-dominated phase of ISM

DIB tracers of H I gas

MISSION ACCOMPLISHED!!

First Database Release: Oct 2017 (Fan et al. 2017)

http://dib.uchicago.edu/

- Detected 150 additional narrow, weak DIBs
 - => ~550 narrow DIBs and counting...
- 2 distinct classes of DIB carriers:
 - => C₂ DIBs: tracers of denser gas (minority in number)
 - => Classical DIBs: tracer of H I (majority in number)
- Confirmed 10 broad DIBs; rejected 2 features; still 10 probable cases
- Measured characteristics of broad 6177Å DIB: part of the "classical"
 DIB group

Thank you!

Acknowledgments:

- The Definitely Interacting Bunch DIB collaboration:
- D.G. York, D.E. Welty S.D. Friedman T.P Snow,
- J. Dahlstrom, L. M. Hobbs, B. Rachford, B. York,
- B. McCall & T. Oka, H. Fan, the many students who crossed our path in those 17+ years...
- DDRF grant D0001.8244 in support of the Broad DIB Survey

