#### Science with ひとみ (*Hitomi*)

Matteo Guainazzi [former *Hitomi* Operation Scientist at ISAS/JAXA]



## Hitomi in a nutshell





*Hitomi* in the JAXA clean room at Tsukuba

- 6th in a series of X-ray observatories from Japan (a.k.a. ASTRO-H)
- International collaboration of 200+ scientists from Japan/US/Europe/Canada

Designed for:

- high-resolution imaging spectroscopy (ΔE≤5 eV in 0.3-20 keV energy band)
- hard X-ray (≤80 keV) focusing optics
- broad-band coverage up to ~600 keV
- Successfully launched on February 17, 2016
- Critical operation phase completed on
  February 24, 2016 (extension of the EOB)
- Lost contact on March 26, 2016
- Mission declared lost on April 28, 2016



٠

٠

٠

٠

٠

٠

### Hitomi observation plan

Takahashi et al., 2016, SPIE, 9905, OUT

- Perseus (galaxy cluster): February 25-27, March 4-8
- N132D (Supernova Remnant): March 8-11
  - IGRJ16318-4848 ([Be] High-Mass X-ray Binary): March 11-15
  - RXJ1856-3754 (Isolated Neutron Star): March 17-19
- G21.5-0.9 (Supernova Remnant): March 19-23
- Crab (Supernova Remnant + pulsar): March 25

Mkn205 (Active Galactic Nucleus): March 26-...

Early science - commissioning and calibration





# The quiescent intracluster medium in the core of the Perseus cluster

The Hitomi collaboration\*

Hitomi/SXS spectrum in the innermost ~60 kpc of the Perseus Cluster







# The quiescent intracluster medium in the core of the Perseus cluster

The Hitomi collaboration\*

Hitomi/SXS spectrum in the innermost ~60 kpc of the Perseus Cluster





The quiescent intracluster medium in the core of the Perseus cluster The Hitomi collaboration\*





The quiescent intracluster medium in the core of the Perseus cluster The Hitomi collaboration\*





The quiescent intracluster medium in the core of the Perseus cluster The Hitomi collaboration\*





The quiescent intracluster medium in the core of the Perseus cluster The Hitomi collaboration\*





The quiescent intracluster medium in the core of the Perseus cluster The Hitomi collaboration\*





The quiescent intracluster medium in the core of the Perseus cluster The Hitomi collaboration\*

The SXS (non-dispersive micro-calorimeter) is the first X-ray instrument resolving emission lines in extended sources and measuring their Doppler broadening and shifts



- <u>Astrophysics</u>: unexpected low level of turbulence despite vigorous AGN feedback
- <u>Cosmology</u>: corrections to hydrostatic equilibrium small → Xray cluster mass function can be used a reliable cosmological probe

[See Maggie Lieu's talk for a different view]



## Resonant scattering in the ICM

Hitomi Collaboration, 2017, arXiv:1710.04648



RS is sensitive to anisotropies of the velocity field, and small-scale motions and density inhomogeneities









## Solar abundance ratios of the iron-peak elements in the Perseus cluster

Hitomi Collaboration\*

Energy (keV)



nature of the average type Ia supernova in the Universe



Solar abundance ratios of the iron-peak elements in the Perseus cluster

- The hot ICM is ~an isolated system in the potential dark matter potential well → largescale clusters are representative of the Universe as a whole
- Fe-peak elements are thought to be produced primarily by type la supernovae over cosmological times
- The Ni/Fe and Mn/Fe ratio depends the relative ratio of near-M<sub>ch</sub> versus sub-M<sub>ch</sub> explosions
- X-ray spectroscopy allow us to identify the dominant type Ia progenitor in clusters
- The average nature of type Ia supernovae is independent of the star formation of their host galaxies





## Search for Dark Matter candidates



Hitomi Collaboration, 2017, ApJL, 837, L15

An unidentified feature at ~3.5 keV observed by *Chandra* and XMM-Newton had been attributed to the decay of the "sterile neutrino" - one possible dark matter candidate





#### Where is the AGN?

Hitomi Collaboration, 2016, Nature, 535, 117

Hitomi/SXS spectrum in the innermost ~60 kpc of the Perseus Cluster





#### Where is the AGN?

Hitomi Collaboration, 2016, Nature, 535, 117

Hitomi/SXS spectrum in the innermost ~60 kpc of the Perseus Cluster





## Origin of the Fel fluorescent line in NGC1275

Hitomi Collaboration, in preparation



The width and intensity are consistent with being produced 6-45 pc from the black hole

no accretion disk, no Broad Line Region, no molecular filaments in the ICM





## Origin of the Fe line in IGRJ16318-4848

Hitomi Collaboration, in preparation



If coming from the stellar wind  $v_r \sim 1000-1500 \text{ km s}^{-1} \rightarrow \text{line coming from a small region close to}$ the compact object ( $\leq 10^{13} \text{ cm}$  - distance between star and compact object  $\sim 2 \times 10^{13} \text{ cm}$ ) "Future X-ray calorimetry missions, e.g. the X-ray Astronomy Recovery Mission (XARM) and Athena will be crucial to ..."



XARM

- JAXA and NASA agreed to fly a mission to recovery the X-ray spectroscopy highresolution science
- Payload:
- Micro-calorimeter (Resolve)
  - ≤7 eV energy resolution in the 0.3-12 keV energy range, 3'x3' field-of-view
- Large-field (~40'x40') CCD detectors (Xtend)
  - ≤170 eV resolution @6 keV
- Soft X-ray telescope, ~1.3' Half Energy Width
- Launch expected by the end of Japanese Fiscal Year 2020
- The 154<sup>th</sup> SPC meeting approved a MoO participation by the ESA Science Program



Athena

Courtesy D.Barret (IRAP)

*Athena* micro-calorimeter effective area vs. existing or planned high-resolution instruments



Baryons astrophysics in the local Universe (XARM) → history of large-scale structures (*Athena*)

