

CHEOPS ETC Tools

Monika Lendl CHEOPS CST Associate Space Research Institute Austrian Academy of Sciences

From idea to observation

CHEOPS photometric precision

3

CHEOPS ETC tools

Exposure Time Calculator

What is the photometric precision reached by CHEOPS in a given time interval?

<u>Useful for:</u> a wide range of general science questions

Transit Signal to Noise Predictor

What is the Signal to Noise reached on the *detection of a transit* for a given planetary sysem?

<u>Useful for:</u> exoplaent transit detection and depth measurements

CHEOPS ETC tools

Exposure Time

Calculator

Input:

- stellar magnitude
- stellar type
- duration of interest
- optional: coordinates (RA, DEC)

Output:

 photometric precision reached over the total specified time bin

Transit Signal to Noise Predictor

Input:

- stellar magnitude
- stellar type
- planetary radius
- planetary period
- transit impact parameter
- orbital eccentricity, argument of periastron
- optional: coordinates

Output:

- Signal to Noise of the transit detection

cheops

Noise Components

Backbone of the ETC tools is the CHEOPS Noise Budget (see A. Fortier's talk)

White Noise:

Scales with sqrt(time)

- Photon noise
- Sky background
- Readout noise
- Analog chain (random component)
- Quantization
- Cosmic Rays

Red Noise:

Fixed amplitude

- Flat field + jitter
- Dark variability
- Analog electronics
- Timing
- Gain and quantum
 efficiency variability

Pink Noise:

Other behaviour

- Stellar granulation
- Straylight

Assumptions

<u>General:</u>

- Time of interest input by user
- Individual noise components are independent

 \rightarrow they add in quadrature

For <u>Transit SNR predictor</u>:

- Systematics well-characterized: they don't affect the in- and out-of-transit measurement individually
- Duration of out-of-transit observations = twice the duration of transit
- M_P << M_S

In a nutshell

- The ETC tools are spreadsheet based
- Input/Output on the top page
- Calculations carried out on the other pages

	A	В	C	D	E	F	G	Н		1	J	K	L	M	N	0	Р	Q	R	S
-			CHI	EOPS S/N predic	tor															
3																				
				In nut nommeters							Additional	Innut								
б				input parameters							Additional	input								
7																				
-8-			Star type	K3V	select from "Stars"						licker	No	Nes/No							
-10			Planet radius	3	in Earth codii						pecity Cheops trux	NO	MES/110							
-1Y			Period	20	Planetary period						C 1		of the specifical cost of large							
12	1		b	0.00	transit impact parameter					s	pecify visibility	No	Nes/No							
13			RA [decimal deg]	264.27							Input visibility [%]	100	User-specified visibility [%]							-
-4			Dec [decimal deg]	25.70							Visibility table for calculation	9K70	6G5/9G5/9K70/12K70							
-12	-		e	0	eccentricity						Asibility used [%]		calculated							
- 9			omega	0	argument of penastron					c	Jap traction [75]	31.9	carcutated							
18			Exposure Time (s)	3	see table below															
19	1																			
-20																				
-64-																				
-53																				
-24																				
- 22														-						
-69-				Output parameter	5															
-28																				
- 29	1		Instrument noise [ppm]	11.60																
30			Photon noise [ppm]	4.65																
31			Stellar noise [ppm]	0.00																
-36-			Iotal noise [ppm]	12.50																
-37			KdW3/N S/N degradation	0.80																
35	1		Syntoegradation	0.00																
- 36	1		S/N	90.66																
-36			5/11	70.00																
-38-																				
-40																				
-41																				
-45-																				
45																				
44			r			Exposure time range	5					1								
- 42		v	G 0 st	Mart ern (sec) [70%FWC		K 0 sta Min t evn (ser) [10%FWC]	r Mart em (ser) (70%FWC)		Min t erro	M ((sec) [10%FW[1]) star Mart evo (sec) [70%FWC]									
- 47 -		6	0.17	1.17		0.16	1.11		in the cop	0.12	0.87									
- 48		6.5	0.27	1.86		0.25	1.76			0.20	1.38									
- 48		7	0.42	2.94		0.40	2.80			0.31	2.19			-						
51		8	1.05	7.38		1.00	7.02			0.79	3.47									
52		8.5	1.67	11.70		1.59	11.13			1.25	8.72									
-23	-	9	2.65	18.55		2.52	17.64			1.97	13.82									
-25-		9.5	4.20	29.40		3.99	27.96		-	3.13	21.90									
56		10.5	10.55	60.00		10.03	60.00			7.86	55.00									
57		11	16.72	60.00		15.90	60.00			12.45	60.00									
-58-		11.5	26.50	60.00		25.20	60.00			19.74	60.00									
60		12.5	42.00	60.00		37.74	60.00		1	49.57	60.00			-						
-61		13	60.00	60.00		60.00	60.00			00.00	60.00									
-62		_																		
- 63-														-						
27	-			2																
14 4				1 L .:				NZ 11 1	De la											_
		*	input output C	alculations	voise estimation	Siv rescaling	Flicker	VISIDI	ittes	Stars	Constants									
		-																		
					and the second se															

In a nutshell – Transit SNR predictor

Enter system parameters

Monika Lendl

In a nutshell – Transit SNR predictor

Enter system parameters

Monika Lendl

In a nutshell – Transit SNR predictor

Enter system parameters

Include flicker, specify visibility

	A	В	С	D	E	F	G	Н		J	K	L	М	N	0	Р	Q	R	S
			СНЕ	EOPS S/N predic	tor														
-4-5-				Input parameters						Additional	Input								
-9-			1								- 1								
- 8			Star type	K3V	select from "Stars"					Flicker	No	Ves to							
9			mv	7.00	V band magnutude					Specify CHEOPS flux	No	Mes/No							
-19			Planet radius	3	in Earth radii					-h	ŝ	10 User's ecified e-/s of taget							
-+			Period	20	Planetary period					Constant and a line line line	NI-								
			D RA [decimal deg]	264.27	transit impact parameter					Specity visibility		MES/INO							
-12			Dec [decimal deg]	25.70						Visibility table calculation	9870	665/95/9K70/12K70							
15			e	0	eccentricity					Visibility used [%]	68.1	calculated							
16			omega	0	agument of periastron					Gap fraction [%]	31.9	calculad							
			Exposure Time [s]	3	see table below														
-28											1								
-54																			
-22																			
-23																			
-26			(Output parameters															
-27				output parameters															
28																			
			Instrument noise [ppm]	11.60															
-3Y-			Photon noise [ppm]	4.65															
-35			Total noise [ppm]	12.50															
- 33			Raw S/N	113.78															
- 34			S/N degradation	0.80															
35																			
36			S/N	90.66															
-36-																			
- 48																			
- 40																			
-44-																			
-75-																			
11						Exposure time range													
- 15			C 0.0	r	1	LAPUSULE LITTLE Tange	r			0.etar	1								
-76		v	Mintexp(sec)[10%FWC]	Maxtexp(sec)[70%FWC]		Mintexp(sec)[10%FWC]	Maxtexp(sec)[70%FWC]		Mintexp(sec)[10%FWC	Maxtexp(sec)[70%;FWC]									
-47		6	0.17	1.17		0.16	1.11		0.12	0.87									
-48		6.5	0.27	1.86		0.25	1.76		0.20	1.38									
-58		75	0.42	2.94		0.40	2.80		0.31	2.19									<u> </u>
51		8	1.05	7.38		1.00	7.02		0.79	5.50									
_52		8.5	1.67	11.70		1.59	11.13		1.25	8.72									
-23		9	2.65	18.55		2.52	17.64		1.97	13.82									
-55-		7.5	4.20	29.40		6.33	27.90		3.13	21.90			-						
- 56		10.5	10.55	60.00		10.03	60.00		7.86	55.00									
-57		11	16.72	60.00		15.90	60.00		12.45	60.00									
-58		11.5	26.50	60.00		25.20	60.00		19.74	60.00									<u> </u>
60		12.5	42.00	00.00		57.74	60.00		49.57	60.00			-						
-6I		13	00.00	60.00		60.00	60.00		60.00	60.00									
- 62																			
-27											-		+ +						
22					-					-	-		++						
14 4				1.1.2				1.4.1.4											
		*	input Output	liculations	voise estimatioi	n SN rescaling	Flicker	Visibil	ities Stars	Constants									

In a nutshell – Transit SNR predictor

Enter system parameters

CHEOPS

Include flicker, specify visibility

In a nutshell – Transit SNR predictor

Enter system parameters

CHEOPS

Include flicker, specify visibility

In a nutshell - ETC

Timescale

Monika Lendl

Spreadsheet "Calculations"

Purpose:

- Calculates the planet and transit parameters: transit depth, duration (Transit SNR Predictor)
- Calculate the number of electrons registered per transit (or duration of interest)
- Summarizes noise components as on "Noise estimation" spreadsheet

Spreadsheet "Noise Estimation"

Purpose:

Monika Lend

- Calculates the contribution of the individual noise componets on transit timescale (ETC: timescale of interest)
- For SNR predictor: also calculates the white noise contribution on the out-of-transit timescale
- Reproduces the amplitude of flicker as calculated from the "Flicker" spreadsheet
- Combines these noise factors to calculate:

cheops

- \rightarrow ETC: the total noise on the timescale of interest
- → Transit SNR predictor: the total noise in and out-of transit and their combination

Spreadsheet "SNR rescaling"

Purpose:

- Takes into account the effect of light curve interruptions due to Earth occultations and SAA crossings
- <u>ETC</u>: precisions are scaled to the number of available data points
- <u>Transit SNR predictor</u>: we have studied the impact of light curve interruptions on the attained transit signal-to-noise ratio as

$$\frac{SN_{gap}}{SN_{nogap}} = 1 - 0.0064 * fgap \,,$$

This scaling factor is calculated here.

Spreadsheet "Flicker"

Purpose:

- Calculates the amplitude of "flicker" noise, i.e. noise introduced by stellar granulation on the in and out-of-transit timescales (ETC: timescale of interest)
- Details will be published in Lendl+ 2017c
- Based on the behaviour of simulated flicker light curves

Spreadsheet "Flicker"

Purpose:

- Calculates the amplitude of "flicker" noise, i.e. noise introduced by stellar granulation on the in and out-of-transit timescales (ETC: timescale of interest)
- Details will be published in Lendl+ 2017c
- Based on the behaviour of simulated flicker light curves

Spreadsheet "Visibilities"

Purpose:

- Estimates the fraction of the light curve free from interruption
- Based on a grid of tabulated values

Fraction of time spent on target during period of optimal target visibility

(calculated over 48h)

Spreadsheet "Stars"

Purpose:

- Estimates the number of electrons per second registered by CHEOPS
- Based on values calculated for V=8 stars, and scaled to the target magnitude

Spreadsheet "Constants"

Purpose:

Monika Lend

• Physical constants used thoughout the document

cheops

CHEOPS ETC tools

Current version number is v1.4 Will remain frozen until guest obeservers call Will be revised after in-orbit commissioning

Thank you, and see you at the hands-on session

Monika Lendl

cheops